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ABSTRACT: 
 
Low-level feature extraction is the first step in any image analysis procedure and is essential for the performance of stereo vision and 
object recognition systems. Research concerning the detection of corners, blobs and circular or point like features is particularly rich 
and many procedures have been proposed in the literature. In this paper, several frequently used methods and some novel ideas are 
tested and compared. We measure the performance of the detectors under the criteria of their detection and repeatability rate as well 
as the localization accuracy. We present a short review of the major interest point detectors, propose some improvements and 
describe the experimental setup used for our comparison. Finally, we determine which detector leads to the best results and show 
that it satisfies the criteria specified above. 
 
 

1. INTRODUCTION 

It has been shown that local features are well suited to 
automatic image matching and object tracking tasks. Interest 
operators extract salient image features, which are distinctive in 
their neighborhood and are reproduced in corresponding images 
in a similar way. At the same time, interest operators supply 
one or more characteristics, which can be used during the later 
image matching. The meaning of the extracted characteristics 
however depends on the context and therefore interest points do 
not necessarily correspond to physical corners in the scene. 
 
1.1 Requirements 

Initially, it is necessary to define the requirements to an optimal 
interest operator. As criteria for a distinctive matching 
candidate the characteristics proposed by Haralick and Shapiro 
(Haralick & Shapiro, 1992) would suit our purpose: 
• Distinctness: An interest point should stand out clearly 

against the background and be unique in its neighborhood. 
• Invariance: The determination should be independent of 

the geometrical and radiometrical distortions. 
• Stability: The selection of interest points should be robust 

to noise and blunders. 
• Uniqueness: Apart from local distinctiveness an interest 

point should also possess a global uniqueness, in order to 
improve the distinction of repetitive patterns. 

• Interpretability: Interest values should have a significant 
meaning, so that they can be used for correspondence 
analysis and higher image interpretation. 

These properties make interest points very successful in the 
context of feature based image matching and the temporal 
analysis of image sequences. While the characteristics of 
distinctiveness, invariance and stability define the substantial 
requirements to an interest operator, the characteristics of the 
uniqueness and interpretability intensify the meaning of the 
term 'interesting'. 
 

1.2 State-of-the-Art 

One of the first interest operators was developed by Moravec 
(Moravec, 1977). Since then a variety of publications have 
appeared to this topic. A comprehensive overview of the current 
methods for the extraction of point features can be found e.g. in 
Schmid (Schmid et al., 2000). The existing approaches can be 
divided into three categories: 
• Intensity-based: The computation of the characteristic for 

the presence of a salient feature comes directly from the 
intensity values. 

• Contour-based: These methods extract an outline and look 
for places with maximum curvature or make a polygonal 
approximation of the contour and detect the intersections. 

• Model-based: By fitting of parametric intensity models to 
image patterns localization with sub-pixel accuracy can be 
achieved. 

The contour-based methods are critical in the neighborhood of 
crossings, since edge extraction often produces interruptions or 
wrong connections in places, where three or more edges meet 
(s. Figure 10). The model-based variants are limited, depending 
on the used knowledgebase, to special structures (e.g. L-
corners). In practice, the intensity-based methods are most 
common for general application. 
A number of experiments were performed to evaluate interest 
point detectors. Schmid (Schmid et al., 2000) accomplished a 
practical comparison of interest operators using the authors’ 
original implementations. The operators of Förstner (Förstner, 
1994), Cottier, Heitger, Horaud as well as Harris (Harris & 
Stephens, 1988) were evaluated quantitatively. It was found that 
the Harris operator was the most stable of all. In Mikolajczyk 
(Mikolajczyk & Schmid, 2004) the Harris detector was 
combined with a Laplacian-based scale selection and extended 
to deal with affine transformations. Hall (Hall et al., 2002) 
formalized a definition of saliency under scale changes and 
evaluated the Harris, Lindeberg (Lindeberg, 1998) and Harris-
Laplacian corner detectors as well. 
 
 



 

Johansson (Johansson & Söderberg, 2004) found that the star 
pattern method and the 4th order tensor perform better than the 
Harris detector. Köthe (Köthe, 2003) improved the structure 
tensor computation using an increased resolution and non-linear 
averaging to optimize the localization accuracy. 
Lowe (Lowe, 2004) described image feature generation with the 
scale invariant feature transform (SIFT). Mikolajczyk 
(Mikolajczyk & Schmid, 2003) compare SIFT descriptors, 
steerable filters, differential and moment invariants, complex 
filters and cross-correlation for different types of interest points. 
They observed that SIFT descriptors perform best and steerable 
filters come second. Sojka (Sojka, 2003) used Bayesian 
estimations to measure the probability that an image area 
contains a corner candidate. He demonstrated the improvements 
in contrast to Harris, SUSAN (Smith & Brady, 1997), Deriche-
Giraudon (Deriche & Giraudon, 1993), Beaudet, Noble and 
Kitchen-Rosenfeld corner detector approaches. Zuliani (Zuliani 
et al., 2004) proposed a unifying description and mathematical 
comparison of the Harris, Noble, Kanade-Lucas-Tomasi and 
Kenney point detectors. 
However, the selection of an optimal procedure remains 
difficult, since the results substantially depend on the respective 
implementation (Rodehorst, 2004). 

 
2. INTEREST OPERATORS 

In order to find the methodical advantages, the two most 
preferred interest operators in digital photogrammetry and 
computer vision, the Förstner operator and the Plessey point 
detector, were implemented under comparable conditions. 
 
2.1 Differential Operators 

In the following differential operators, which assign the 
derivative to a function, are described. They are used to 
determine the magnitude and the direction of intensity value 
changes in an image. In contrast to the rough approximation by 
direct gray value differences or to the application of discrete 
3 3×  masks, e.g. the classical Sobel operator, adjustable 
continuous filters are recommended. 
Canny (Canny, 1986) described a continuous filter function for 
stage edges, which is approximated by the first derivative of the 
Gaussian. The convolution and differentiation are linear shift-
invariant operations, to which associative and commutative 
laws apply. Therefore, the derivative of a smoothed image 
corresponds to a convolution of the image with the derivative of 
the Gaussian. 
Given a two-dimensional image function ( ),f x y , the gradient 

( )T
,x yf f f∇ =  (1)

is defined by the spatial derivatives of f in x- and y-direction 
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Figure 1.  Gaussian filter mask using standard deviation 
1.4σ =  and the two spatial derivatives 

 
denotes spatial derivatives in x- and y-direction of a Gaussian  
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with standard deviation σ . An example of the filter kernels is 
shown in Figure 1. 
Deriche’s (Deriche, 1990) implementation of Canny’s method 
ensures a constant computation cost using a fixed convolution 
kernel. In this case, the selection of certain influence areas is 
achieved by recursive function calls. An extension of Canny’s 
quality criterion around the neighboring edge points shows 
however that the filter response of the first derivative of a 
Gaussian is superior to the localization quality of Deriche’s 
operator (Tagare, 1990). 
Depending on the influence of the filter, areas outside the image 
must be accessed for convolution. These boundary problems 
can be eliminated, extending the image borders by the mask 
radius r and mirroring the intensity values. The computation 
costs for the determination of the derivatives depends on the 
dimension of the filter kernel. The radius r of the filter masks 
can automatically be estimated as a function of the standard 
deviation σ  with 2r πσ= .  
The continuous differential operators are steered only by the 
parameter σ  within a typical range from 0.5 to 3.0, whereby 
the smoothing is affected. Using local statistics this parameter 
can also be estimated (Förstner, 1994). Moreover, for the 
realization, the operators were separated. Using the property  
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a decomposition of the two-dimensional filter in two linear 
filters can be achieved. A line-by-line convolution, followed by 
a column-wise processing, reduces the squared computation 
costs 2( )O N  to a linear measure ( )O N . 
 
2.2 Plessey Point Detector 

Harris (Harris & Stephens, 1988) described an improvement of 
the classical Moravec operator. He solved the problem of the 
discrete shifts and directions with the help of the 
autocorrelation function and increased the accuracy of the 
localization. The idea of autocorrelation exists in a statistical 
similarity comparison (correlation) of an image window shifted 
slightly in relation to the original image. The window contains a 
significant point feature if the similarity for each shift in the 
neighborhood decreases. 
The autocorrelation matrix A is computed by summation of the 
first derivative of the image function f over the area Ω  around 
each image location 
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where, in contrast to the original description, the partial 
derivatives 

xf  and 
yf  are determined with the continuous 

differential operators of section 2.1. In this case the size of Ω  
can be automatically determined by the used standard deviation 
σ . The matrix A finally describes the neighborhood structure 
in each pixel and has the following characteristics: 
• Rank 2: A full rank indicates a salient point 
• Rank 1: A singular matrix suggests a straight edge 
• Rank 0: The matrix defines a homogeneous area 

The Plessey point detector determines the point weight w from 
the autocorrelation matrix A with the corner response function 

( ) ( )2det tracew k= − ⋅A A . (8)

In order to receive a separation of the points from edges, the 
parameter k is selected empirically between 0.04 and 0.06. This 
yields to positive values at points and to negative values in case 
of straight edges. The position of an interest point is finally 
determined by local non-maxima suppression. 
 
2.3 Förstner Operator 

Förstner (Förstner, 1994; Förstner & Gülch, 1987) also 
identifies salient points by use of the autocorrelation matrix A. 
First, the derivatives are computed on the smoothed image with 
the natural scale σ , and are then summed over a Gaussian 
window using an artificial scale 

2σ  with the structure tensor 
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where the indices of the sums over the area Ω  were omitted for 
simplicity. In our implementation, the continuous filter 
functions of section 2.1 with only one parameter were used. 
Contrary to Harris, Förstner takes the two eigenvalues 

1λ  and 

2λ  of the inverse of A as interest value into account. They 
define axes of an error ellipse. By the computation of their size  
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the following properties can be derived: 
• Small circular ellipses define a salient point 
• Elongated error ellipses suggest a straight edge 
• Large ellipses mark a homogeneous area 

An interest point is present exactly if the given threshold values  
minw  and 

minq  are exceeded. Suitable parameters for this lie 
within the range 

( )min 0.5 1.5w w= ⋅K    and   
min 0.5 0.75q = K , (12)

where w  denotes the mean value of w over the entire image. 
For illustration, the intermediate results produced by the 
Förstner operator are shown in Figure 2, and the result of the 
feature extraction in Figure 11. 
 
2.4 SUSAN-2D Operator 

For an independent comparison, the SUSAN-2D (Smallest 
Univalue Segment Assimilation Nucleus) operator proposed by 

a) Image of Berlin-Palace b) Facade section f 

 
c) 

xf  d) 
yf  

 
e) w f) q 

Figure 2. Intermediate results of the Förstner operator 

 
Smith (Smith & Brady, 1997) was used without modifications. 
The operator is popular due to the freely available source code. 
It essentially compares the brightness of each pixel within a 
circular mask with the middle pixel, in order to determine an 
area, which possesses a similar brightness as the center. In this 
area the point characteristics are derived by determining the 
size, the centroid and the 2nd order moment. 

 
3. COMPARISON AND EVALUATION 

Performance evaluation has gained more and more importance 
in computer vision. In the following the implementations of the 
interest operators are contrasted with one another. To measure 
the properties quantitatively, some evaluation criteria must be 
introduced. We compare the performance of the detectors under 
the criteria of: 
• Detection Rate: The detection rate is a measure of the 

number of true feature points found relative to the number 
of false detections and missed features. 

• Repeatability Rate: The points must be obtained 
independent of varying image conditions. The repeatability 
rate evaluates the stability under different geometric and 
radiometric transformations, as well as the effect of noise. 
The results are shown on natural imagery. 



 

• Localization Accuracy: This criterion is most often used to 
evaluate interest points. The exact position of the features is 
significant for tasks like camera calibration and 3D 
reconstruction. The comparison with precise 3D properties 
is difficult because the camera may introduce a systematic 
bias. Therefore, the sub-pixel location of features is 
evaluated using artificial images. 

First the efficiency of the three test candidates are compared 
using standardized reference images. The detection rate of the 
feature extraction for the synthetic test patterns is illustrated in 
Figure 3. The coloring of the interest points corresponds to the 
computed point weight with the own implementations. 
The advantages of the SUSAN-2D operator are fast 
computation and outstanding results with unimpaired and 
unsmoothed images, in particular the own test pattern (see 
Figure 3.a). 
The Plessey point detector reacts sensitively to the sharp raster 
structures of the image. Unfavorable is also that for the used 
definition of the point weight, no threshold value could be 
found which separates the important from the uninteresting 
points (see Figure 3.b). The Förstner operator shows clearly 
better results regarding error ellipses as measure for the interest 
values. The requirement of an approximately round ellipse with 

min 0.5q = , however, suppresses points at straight edges, so that  

 

  
a) SUSAN-2D operator 

  
b) Plessey point detector 

  
c) Förstner operator 

Figure 3. Results of the interest operators with the reference 
image of Smith (left) and Rosenthaler (right) 

 

 
Figure 4. Transformed test pattern for the quantitative 

comparison of the interest operators 

 
fewer features are detected than e.g. with the SUSAN-2D 
operator (see Figure 3.c). 
The synthetic test pattern of Rosenthaler (Rosenthaler et al., 
1992) simulates somewhat more realistic conditions, since it is 
smoothed and contains less contrast. As expected, the two 
procedures with the robust gradient computation show better 
results in comparison to the SUSAN-2D operator. However, the 
experiments carried out, that only the Förstner operator 
succeeded finding all potential interest points without errors.  
This performance rating should be verified by a quantitative 
comparison, and the stability of the feature extraction should be 
measured. Therefore the front section of the Berlin-Palace was 
subjected to different transformations (see Figure 4): 
• Brightness and Contrast: The radiometric characteristics 

were modified for the entire picture between 25 and 175 
percent 

• Rotation: Due to symmetry the rotations in the image plane 
were executed in steps between 0 and 90 degrees 

• Perspective: Different points of view were simulated by a 
projective mapping of an image rotated around the 
horizontal axis between 0 and 60 degrees 

• Scaling: The dimension of the image area was changed with 
a factor between 0.4 and 2.0 

• Noise: The intensity values of the image were disturbed 
with a Gauss normal distribution up to 25 percent 

We simulate the transformations on the computer using the 
indirect method with bi-cubic resampling. This may introduce 
interpolation noise and the camera model probably is 
unrealistic. On the other hand, the homography is exactly 
known and this approach is simple.  
As a criterion for the evaluation, the repeatability rate was 
selected. On the basis of the well-known positions of the 
interest points in the test patterns, the number of correct 
features in the transformed images can be counted. The detailed 
results of this quantitative comparison are shown in Figure 5. 
The investigations showed that e.g. the Förstner operator can 
cope with twice as strong radiometric changes as the Plessey 
point detector. Moreover, an increase in contrast leads 
immediate to losses with SUSAN-2D, while the result remains 
almost constant with the Förstner operator. All three test 
candidates show pleasingly stable results for rotations in the 
image plane. However, substantial differences can be observed 
during the perspective mapping or image scaling. 



 

a) Relative intensity [%] b) Relative contrast [%] 

c) Rotation angle [deg.] d) View angle [deg.] 

e) Scaling factor f) Noise [%] 

Figure 5. Repeatability rates for the transformed test patterns 
using the SUSAN-2D operator ( ), the Plessey 
point detector (▲) and the Förstner operator ( ) 

 
Even if the stability of all procedures decreases with image 
noise significantly, the Förstner operator is clearly superior to 
the SUSAN-2D operator. In summary the implementation of the 
Förstner operator shows the best results during the experiments 
(see Table 2). 

 
4. IMPROVEMENTS AND EXTENSIONS 

Since the Förstner operator succeeded as the most efficient 
method under the requirements of image matching and object 
tracking, some further improvements are to be suggested in the 
following. 
 
4.1 Sub-pixel Localization with Paraboloid Fitting 

Since the accuracy for determining the image coordinates has a 
crucial influence on the later reconstruction, the localization 
should take place as precisely as possible. 
Therefore the sub-pixel position for point like features is 
determined with a paraboloid model. On the basis of the integer 
position of a feature with maximum point weight w its direct 
neighborhood is regarded and the nine values are normalized to 
1 (see Figure 6.a). For modeling a paraboloid the bi-squared 
function 

( ) 2 2,w x y ax by cxy dx ey f= + + + + +  (13)

can be used, whose surface is adapted on the normalized point 
weight. 

  
a) Local maximum of the 

point weight 
b) Adapted surface of the 

paraboloid 
Figure 6. Spatial representation of a paraboloid fitting to the 

normalized point weight 

 
In order to determine the coefficients T( , , )a f=x K  of the 
paraboloid, a linear set of equations of the form 

=A x b  (14)

can be formulated with 
2 2
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If a point with maximum weight at position ( , )x y  is defined as 
the origin of a local coordinate system (see Figure 7), the 
parameters from A are simplified to a constant design matrix: 
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(16)

The use of the maximum point and its eight neighbors with only 
six unknowns in the coefficient vector x leads to an over-
determined set of linear equations, which can be solved 
numerically e.g. with the help of the Moore-Penrose Pseudo-
inverse 

( )T T+
=x A A A b . (17)

After the coefficients of the paraboloid are computed, the 
position of the maximum can be found (see Figure 6.b). 

 

 
 

a) Position with maximum 
point weight 

b) Maximum as origin 

Figure 7. Definition of the local coordinate system 



 

  
a) Without noise b) 10% noise c) 25% noise 

Figure 8. Test pattern for the sub-pixel localization under 
different noise conditions 

 
Therefore, the first partial derivatives 
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must to be set to zero. The sub-pixel shift in x and y-direction 
can be solved directly in closed form. After rewriting  
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applies. Finally the position for point like features can be 
improved by adding the sub-pixel shift to the integer position 
( , )x u y v+ + . In order to be able to evaluate the accuracy of 
the sub-pixel localization, synthetic test patterns with points of 
a radius between two and five pixels in different positions were 
generated (see Figure 8). 
By adding noise of a Gauss normal distribution with 10 and 25 
percent, realistic conditions can be approximated. Table 1 
contains the quantitative results of the sub-pixel localization. 
 

Mean error [pixel] Maximum error [pixel] Noise 
[%] 2 3 4 5 2 3  4 5 

Resolution
[pixel] 

Reliability
[pixel] 

0 0.029 0.030 0.024 0.023 0.052 0.045 0.045 0.059     1 / 37     1 / 19 

10 0.058 0.038 0.043 0.037 0.116 0.104 0.115 0.175     1 / 22     1 / 7 

25 0.147 0.148 0.116 0.135 0.462 0.668 0.424 0.481     1 / 7     1 / 2 

Table 1. Localization error of the sub-pixel approach as a 
function of the point size and the noise level 

 
It shows, that under ideal conditions, the position can be 
determined with an average accuracy of approximately 1/37 
pixel and a maximum deviation of 1/19 pixel is not exceeded. 
In strongly disturbed images with a noise level of 25 percent the 
mean resolution reduces to 1/7 pixel and the reliability to a half 
pixel. 

 

 
Figure 9. Systematic localization error with increasing 

smoothing 
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d) LoG 
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Figure 10. Localization problem by the intersection of edges 

 
However, the use of a window with finite size for 
autocorrelation causes a systematic localization error for L- or 
T-corners (see Figure 9). The shift, depending on the standard 
deviation used for the Gaussian, is described in Wang (Wang & 
Brady, 1994). Förstner (Förstner & Gülch, 1987) as well as 
Deriche (Deriche & Giraudon, 1993) suggest a multi-level 
procedure to increase the accuracy of the determined position 
using edge intersections. 
Nevertheless, classical edge operators that look for the 
maximum of the first derivative (Gradient of Gaussian, GoG) 
are less suitable for a correction, since they exhibit the same 
shifts. LoG operators (Laplacian of Gaussian) that search for 
zero-crossings of the second derivative make edge intersection 
difficult by strong rounding of the corners. This behavior is 
shown in Figure 10 using examples of the Canny edge operator 
(Canny, 1986) and the Marr and Hildreth operator (Marr & 
Hildreth, 1980) respectively. 
 
4.2 Uniform Point Distribution with Adaptive Threshold 

Due to the requirements in image orientation or camera 
tracking, not all extracted points are needed, so only the most 
important interest points must be selected. 
 

  
a) Global threshold b) Dynamic approach 

Figure 11. Optimization of the point distribution with an 
adaptive threshold 

 
When using a global threshold for the entire image, unfavorable 
point accumulations may occur in structured areas while 
homogeneous ranges are neglected. An adaptive threshold 
procedure can be applied to optimize the point distribution. In 
order to affect the local point density, the entire image is first 
divided into equal sized segments. 
In relation to the overall number of points each segment keeps 
proportionate a contingent, which is used for the strongest 
points within each segment. If a contingent remains during the 
allocation, or if segments contain fewer points than intended in 
the contingent, these are assigned afterwards to the global 
strongest points. The optimization of the point distribution with 
an adaptive threshold is shown in Figure 11. From approx. 1000 
extracted point features the most important 150 candidates in 
100 segments were selected. 



 

 
Figure 12. RGB color test pattern with extracted image points 

 
4.3 Extension of the Autocorrelation for Color Images 

A majority of the current sensor systems acquire color images. 
By an extension of the interest operator to color images, point 
features should be recognized by their color, even if they don’t 
differ from the background in brightness. Montesinos 
(Montesinos et al., 1998) extended the autocorrelation matrix A 
for RGB color images T( , , )f r g b= , by computing the first 
partial derivative for each color channel. The determination of 
the autocorrelation matrix is similar to section 2.3 with: 
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∑ ∑
∑ ∑

A (20)

In order to demonstrate the functionality of the color extension, 
a synthetic test pattern with colored points was provided (see 
Figure 12). The color image has a continuous brightness 
gradient and the points differ only in their color or saturation 
from the background. Each cross marks a successfully detected 
color interest point. 
 

5. EXPERIMENTAL RESULTS 

After the performance of the implemented interest operator was 
illustrated using synthetic test patterns, this section presents 
results for real images. The interest points on the historical 
facade are based exclusively on intensity values. Results for 
color images are shown for the bust of the Nofretete (see Figure 
13.c-d). The photographs were produced with a DV-Camcorder 
at a resolution of 1020 1360×  pixels. Finally, from the popular 
Valbonne sequence (Schaffalitzky & Zisserman, 2001) two 
rotated test images with 768 512×  pixels were selected. The 
overlapping area only constitutes a small portion of the entire 
image (see Figure 13.a and b). 
 

Detection rate Repeatability rate 
Detector 

Smith Rosen. Inten. Contr. Rot. View Scale Noise
Locali-
zation

SUSAN-2D 160* 78 80 83 92 72 74 54 0.34 

Plessey 24 86 79 90 92 82 74 65 0.29 

Förstner 100 100 90 97 96 88 86 70 0.28 

Table 2. Performance of the interest operators under the criteria 
of their detection and repeatability rate [in %] as well as the 
localization accuracy [in pixel] (* resulting from edge features). 

 
6. CONCLUSIONS 

Feature extraction using interest operators supplies stable point 
samples, which are suitable as candidates for image matching 
and object tracking. However, the quality of the interest points  

a) b) 

 
c) d) e) 

Figure 13. Extracted interest points for the test images of the 
Valbonne church, France, and the Nofretete bust 

 
depends on the detector. In addition to the mathematical model, 
the implementation is of major importance for practical use. 
The implementation of the robust and well adjustable gradient 
computation with the continuous differential operators yields to 
far better results in practice as the use of discrete filter masks or 
gray value differences. The methodical comparison and the 
quantitative analysis of the most popular interest operators 
showed, contrary to Schmid (Schmid et al., 2000), that the 
implementation of the Förstner operator obtained the best 
results with regard to distinctness, invariance, stability, 
uniqueness, and interpretability. 
Moreover, it was demonstrated that, for isolated points, the 
localization can be achieved with sub-pixel accuracy using a 
paraboloid fitting. In order to increase the stability of 
orientation procedures and camera tracking tasks, an adaptive 
threshold was suggested, which optimizes the point distribution 
in the image. Finally, to evaluate the additional information of 
color images an appropriate extension of the autocorrelation 
function for colored point features was described and tested. 
However, the systematic localization error should be reduced 
for L and T-corners, since the shifts are different in the images 
due to the perspective distortions in close range. First attempts 
to eliminate the localization error with a hierarchical image 
pyramid show promising results, which must be examined in 
detail. Finally, a local statistic would be very helpful for the 
estimation of the control parameter to steer the automatic 
computation of interest points. 
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