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Abstract. For surface reconstruction using motion, objects are placed on a
rotating disc in front of a single camera. For camera calibration the method by
[Tsai 1986] was implemented, extended (calculation of distorted from undis-
turbed coordinates) and optimized (e.g. with respect to the number of calibra-
tion planes and points in each plane). It is described how the calibration results
can be used for this special case of surface reconstruction of objects on a
rotating disc. Motion vectors calculated from point correspondences are used as
input for this calculation of 3-D point positions. In two theorems, new
reconstruction formulas are given. Experimentally, accurate depth values could
be obtained for sparse object surface points. It is suggested to combine these
exact values with "surface drafts" calculated by approaches based on reflectance
properties.
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1 INTRODUCTION

Shape from motion is often cited as one of the basic computer vision approaches
[Horn 1986], and even some books in computer vision are focusing on that issue,
e.g. [Kanatani 1990, Maybank 1993]. Rigid objects are projected into the image
plane assuming a certain camera model. For a time sequence of such projections,
motion vectors have to be computed. Based on these vectors, certain shape values
of the objects may be determined. Here, "shape" is defined to be a set of gradient
values of the object surface, cp. [Horn 1986]. Then, from shape values some
depth information may be derived leading to a certain 3-D representation of the
projected objects. Altogether, this process may be applied, e.g., to support
geometric modeling of 3-D objects, or to generate depth maps.

Perhaps the first problem of  "surface from motion" is computation of
dense motion vector fields, cp. [Barron/Fleet/Beauchemin 1994, Handschack/
Klette 1994]. Because these motion vector fields will be "quite erroneous in
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general", the approach may be realistic only in specific image regions with high-
accuracy motion vector fields.

A second problem of shape from motion concerns the calculation of
shape, i.e. surface normals, based on motion vector fields. Certain integrative
methods, integrating also further features as, e.g. the light source direction, will
work for correct motion vector fields, cp. [Aloimonos/Shulman 1990, Klette/Ro-
dehorst 1993], and lead to unique shape values. Because differences of neigh-
boring motion vectors are used, this integrative approach is even more sensitive to
incorrect motion vector results as a direct method will be. A good collection of
direct methods for shape from motion  may be found in [Kanatani 1990], but
these methods do not lead to unique shape values (if no further techniques, e.g.
regularization, are applied), and these methods are numerically complicated.

A third problem is connected with going from shape (gradients) to depth,
i.e. exact surface point positions in 3-D space. There are several suggestions in
literature, e.g. [Aloimonos/Shulman 1990, Frankot/Chellappa 1988]. Such
methods should be refined to react on local gradient distributions. But, e.g. for a
gradient image of stairs it will always remain to be impossible to transform this
into a surface reconstruction.

By using dynamic stereo based on the rotating disc and including the
modification of the epipolar constraint of static stereo, corresponding points in
consecutive images may be used to calculate depth (i.e. problems two and three
will not appear in this approach).

In this paper, controlled object motion (objects on a rotating disc in front
of a single static camera) is considered for calculating depth from motion vectors.
The proposed dynamic stereo method is based on accurate camera calibration
which has to be realized as preprocessing. The method by [Tsai 1986, Tsai 1987]
was selected and extended in a single subprocess (calculation of distorted from
undisturbed coordinates). Then, during object surface reconstruction, calibration
results may be used for efficient and robust depth calculations. Therefore, two
new theorems will be given specifying ways of reconstruction for the specific
situation of a rotating disc.

For the first problem of correct motion vector fields, no new solutions
could be found. Thus, if (!) motion vectors are correct, then depth may be
calculated with very high accuracy and good time efficiency. This holds for dense
vector fields, leading to dense depth maps, as well as for sparse motion vectors,
leading to singular reconstructed points on the object surface, which are called
fixation points. Because reflectance based methods may be used for calculating
"rough drafts" of object surfaces, cp. [Schlüns/Wittig 1993], it is suggested to
use fixation points for further enhancement of reconstructed object surfaces.

The paper is structured as follows: In Section 2 the calibration parameters
are sketched for later use in the reconstruction process. The proposed extension
of Tsai´s method is described. In Section 3 the basic mathematics is given for
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reconstructing surface points of objects placed on the rotating disc. Single motion
vectors are used as input and the calibration parameters are assumed to be known.
In Section 4, a few experimental results are sketched and the real-time aspect is
discussed. Conclusions are given in Section 5.

2 CAMERA CALIBRATION

For camera calibration, internal camera parameters as well as geometric relations
between camera coordinates and world coordinates have to be pre-calculated, and
these data have essential influence on the accuracy obtainable in surface
reconstruction. A good review on calibration techniques was given by [Tsai
1986]. The selected method may be classified to be a non-linear optimization
technique. Here, only a brief definition of used calibration parameters will be
given. The calibration method itself may be found in  [Tsai 1986, Tsai 1987].

Figure 1: Camera geometry with perspective projection (world coordinates
XwYwZw with respect to rotating disc, camera coordinates XcYcZc, and ideal
projected coordinates xuyu) and radial lens distortion (distorted image coordi-
nates xdyd).

For the camera model, perspective projection and radial lens distortion was
assumed. In Fig. 1, the different (left handed) coordinate systems are illustrated.
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In this paper,

(Xw,Yw, Zw)  denote the 3-D coordinates of object points P in the world coordi-
nate system WCS,

(Xc, Yc, Zc) denote the 3-D coordinates of P in the camera coordinate system
CCS,

B is the distance of image plane to projection center (focal length),
(xu, yu) are undistorted image coordinates of (Xc, Yc, Zc) assuming an ideal

pinhole camera,
(xd, yd) are distorted image coordinates, differing from (xu, yu) by radial

lens distortion, and
(xf, yf) are device-dependent  coordinates of (xd, yd) in the digitized image

(not illustrated in Fig. 1).

The Z-axis Zc of the camera coordinate system coincides with the optical axis.
The Z-axis Zw of the world coordinate system coincides with the rotation axis of
the rotating disc. These conditions are not of essential importance for calibration,
but will simplify the used approach to shape analysis.

All coordinates and parameters will be measured at the same scale, e.g.
µm. The only exception are coordinates (xf, yf) for the digitized image which are
given in (sub-) pixels. Besides the device dependent scaling they differ from the
remaining image coordinates by its representation in form of row and column
positions.

Basically, an object point P  may be in arbitrary position in 3-D space.
Four steps are considered for mapping such a point (Xw, Yw, Zw)  onto device
dependent coordinates (xf, yf) .

2 .1 From WCS to CCS

At first, an affine transform has to be considered from world coordinates (Xw,
Yw, Zw)  into camera coordinates  (Xc, Yc, Zc). Let
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The transform of a rigid body from a Cartesian coordinate system into an other
remains to be unique if the 3-D rotation around the origin is performed before the
3-D translation. Rotation matrix R and translation vector T have to be calibrated.

2 .2 From CCS to Undistorted Image Coordinates

The 3-D camera coordinates (Xc, Yc, Zc) are transformed in ideal, undistorted
image coordinates (xu, yu) by perspective projection. According to the pinhole
camera model it holds

xu   =   
B • Xc

Zc
        and       yu   =   

B • Yc
Zc

   .  (2.3)

The focal length B  has to be calibrated.

2 .3 From Undistorted Coordinates to Distorted Ones

For the calculation of undistorted image coordinates (xu, yu) from real, distorted
image coordinates (xd, yd) the method proposed by [Tsai 1986] was selected. The
equations

xd + Dx = xu ,        yd + Dy = yu  (2.4)

are based on the following abbreviations:

Dx = xd • (κ1r2 + κ2r4),        Dy = yd • (κ1r2 + κ2r4)

and        r = √xd
2 + yd

2 .              (2.5)

Here, radial distortion is modeled. The distortion coefficients κ1 and κ2 have to

be calibrated.  A positive value of κ1 or κ2 means that some stretching has to be
performed for going from distorted to undistorted coordinates.
Different lens aberrations or distortions may be characterized by an infinite se-
quence of coefficients. Here, only the first two coefficients are considered. Other-
wise, numeric instability would influence the result. Equations (2.4) may be used
for the restoration of images if values of (xd, yd) are known. But, for going from
undistorted to distorted coordinates, non-linear equations will result. This
direction is not described in [Tsai 1986]. Applying numeric methods for solving
non-linear equational systems leads to non-acceptable inefficiency, e.g. if a
complete image has to be transformed. For that reason, for distorting ideal image
points  (xu, yu) the following approximation was used:

xdi   =   
xu

1 + κ1r(i-1)
2  + κ2r(i-1)

4  ,       ydi   =   
yu

1 + κ1r(i-1)
2  + κ2r(i-1)

4
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with      ri   =   √ xd i
2 + yd i

2          for       i  ∈  {1,...,n} .                (2.6)

With initial value r0  = √ xu
2 + yu

2  , (2.6) leads to a first approximation of the
desired solution (xd, yd). By iteration, improved radii  ri  may be calculated.4

This iterative procedure represents an extension of the original Tsai method.

2 .4 From Distorted Coordinates to
Device Dependent Ones

Finally, real or distorted image coordinates (xd,yd) are transformed into device
dependent image coordinates (xf, yf). Besides a specific scaling, centralized
coordinates have to be transformed into row and column position values. Also a
variable is introduced for possible digitization errors. Let

xf   =   
sxxd

dx
'  + cx  ,            yf   =   

yd
dy

 + cy  ,  (2.7)

where

(cx, cy) denotes the origin of the image coordinates,

dx
'  = dx 

Ncx
Nfx

is the distance of neighboring pixels in an image row,

dx  is the distance between neighboring sensor elements in X-direc-
tion,

dy is the distance between neighboring sensor elements in Y-direction,
Ncx is the number of sensor elements in X-direction, and
Nfx is the number of pixels in each image row.

During scanning and digitization by CCD cameras and frame grabbers, the
hardware timing is not always perfect. [Tsai 1986] was reporting about up to 25
pixel horizontal aberration. The scaling parameter  sx  and the image origin (cx,cy)
have to be calibrated. For sensor parameters, the data sheet of the producer has to
be used.

3 SURFACE RECONSTRUCTION

Assume that during taking images of the object placed on the rotating disc,
projections C1  and C2 in the image plane of the CCS are given for the same
visible surface point W in the WCS, at time slots t1  and t2. The task consists in
calculating the coordinates of W, where the Z-coordinate of W in the CCS may
be identified with the notion depth.

4   In our experiments it was typical that some stabilization of the calculated radii did appear

after about 8 iterations.
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At first, assume that the rotation may be under control, i.e. the rotation
angle between time t1  and t2  is known. Based on the calibration results, the
defined task can be solved. But, then it will be shown that knowledge of rotation
angle is not necessary at all: The given task can be solved just by knowing that C1
and C2  are corresponding to the same surface point W.

3 .1 World Point Position for Given Rotation

For transforming a point W of a world coordinate system WCS into a
point C of a camera coordinate system CCS, the linear equation is given by

RW + T = C              (3.1)

where R denotes the 3 x 3 rotation matrix, and T denotes the translation vector5 .
For a rotation R∆ of the disc and a point W in the WCS, assume

RW + T = C1                          (3.2)

at time t1 before rotation, and

RR∆W + T = C2                          (3.3)

at time t2  after rotation. It follows that

RT(C1 - T) = W
 = (RR∆)T (C2 - T) .                          (3.4)

Thus, it holds that

(RR∆)TT - RTT      =     (RR∆)TC2 - RTC1 .                          (3.5)

Assuming an ideal pinhole camera with focal length B and camera-cen-
tered perspective projection, for the ideal  image point (xPi, yPi)  at time ti, i ≥ 1, it
holds that

xPi   =   
XCiB
ZCi

   ,  and yPi   =   
YCiB
ZCi

   .                          (3.6)

These equations hold for the ideal, non-distorted points (xPi, yPi) in the image
plane. For distorted image coordinates (xDi, yDi) , see Section 2, the following
equations have to be applied:

xPi  =  xDi( )1 + κ1r2 + κ2r4 ,       yPi  =  yDi( )1 + κ1r2 + κ2r4  ,

    and    r  =  √X
2
D i

 + Y 
2
Di

  .                                      (3.7)

For distortion coefficients κ1 and κ2, based on measurements of the distorted
image coordinates, at first the ideal image points Pi  can be computed, and
secondly these ideal points may be used for determining points Ci  in the CCS:

5 R as well as T was determined during camera calibration.
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Ci   =   

 



 

XCi

YCi

ZCi

   =   

 



 

xPiZCi

B

yPiZCi
B

ZCi

   =   ZCi 

 



 

xPi

B

yPi
B

1

   = ZCiEi  .              (3.8)

Ei  is introduced as abbreviation of the given vector. Furthermore, let

b
→

     =   (RR∆)TC2  -  RTC1  .                                      (3.9)

For determining b
→

,  an equational system with unknowns ZC1 and ZC2 has to be
solved:

b
→

     =     (RR∆)TZC2E2  -  RTZC1E1

=     ZC2(RR∆)TE2  -  ZC1R
TE1

=     ZC2 c
→

  -  ZC1 d
→

=     ( )c
→( )-   d

→
  •   

 


 
ZC2

ZC1

 .                                    (3.10)

This linear equational system is denoted by

 b
→

    =    A • z
→

 .                                                                   (3.11)

It  is over-determined because three equations are available for two unknowns.
Numerically stable it  can be solved using pseudo inverse and pivoting,

(ATA)-1AT b
→

     =     z
→

  .                                                (3.12)

For calibration data R, T  and a given disc rotation R∆ , at first the values ZC1 and

ZC2  of vector z
→

  may be calculated from image points E1 and E2 . Here, the

calibration parameter B, κ1, κ2  are used for this computation. The resulting
depth values in the camera coordinate system have to be transformed into the
world coordinate system. Both points C1  =  ZC1E1  and C2  = ZC2E2  are
representations of the same world point W, but at different times. Thus, they may
be projected, and results may be compared for controlling correctness.

Theorem 3.1: For Ei  as defined in (3.8) it holds

W   =   RT(ZC1E1  - T)   =   (RR∆)T(ZC2E2  -  T) .                        (3.13)
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Thus, surface point W is reconstructed in 3-D space. There are three equations
and two unknowns. In fact, the disc rotation angle ϕ∆ may be taken as third
unknown. But, the equation system "looses its linearity" if considered also for
unknown ϕ∆.

3 .2 World Point Position for Unknown Rotation

Originated from the fact that depth computation is over-determined in Section 3.1,
now the idea is to calculate further information from such an equational system.
As third unknown, the disc rotation angle ϕ∆ is considered, defining a rotation
R∆. The system  (3.11) "loses its linearity" if considered for three unknowns
ZC1, ZC2 and ϕ∆. For dealing with this problem, two new approaches will be
considered.

Again, for a point W of the world coordinate system WCS, the equations
(3.2) and (3.3) are considered at consecutive discrete time slots t1  and t2 . Again,
from these equations it follows that

RTC1 - RTT = R∆
T
(RTC2 - RTT)                                (3.14)

Also, the equations (3.8) are used as above. For unknown rotation, lens
distortion may be integrated into the solution as already described in Section 3.1.
It follows that

ZC1R
TE1 - RTT   =   R∆

T
(ZC2R

TE2 - RTT) ,                           (3.15)

what can be abbreviated by

z1 a
→

 - c
→

   =    R∆
T
(z2 b

→
 - c

→
) .                                              (3.16)

By rotating the disc, the corresponding rotation matrix R∆ specifies (only)
a rotation around the Z-axis. The unknown angle ϕ∆ appears in this matrix as ar-
gument of different trigonometric functions.

3.2.1 Straightforward Solution

The inverse rotation matrix around the Z-axes may be represented as

R∆
T
   = 

 



 

cos(ϕ∆) -sin(ϕ∆) 0

sin(ϕ∆) cos(ϕ∆) 0

0 0 1

  .                                    (3.17)

With equation (3.16) it follows that



10 Reinhard Klette, Dirk Mehren and Volker Rodehorst

z1ax - cx   = (z2bx - cx) cos(ϕ∆) - (z2by - cy) sin(ϕ∆)        (3.18.1)

z1ay - cy   = (z2bx - cx) sin(ϕ∆) + (z2by - cy) cos(ϕ∆)        (3.18.2)
z1az - cz   = z2bz - cz        (3.18.3)

Solving (3.18.3) for z2 , and using this in  (3.18.1) and (3.18.2), it follows that

z1ax - cx   =    
 


 
z1azbx

bz
  -  cx    cos(ϕ∆) - 

 


 
z1azby

bz
  -   c y      sin(ϕ∆)

z1ay - cy   =    
 


 
z1azbx

bz
  -  cx    sin(ϕ∆) +  

 


 
z1azby

bz
  -   c y    cos(ϕ∆) .   (3.19)

This equational system with two unknowns ϕ∆ and z1 has a unique solution6 ,
and by applying (3.18.3), altogether it follows

Theorem 3.2:   It holds

ϕ∆   =   2 arctan 
 


 
c2(aybz - byaz) + c1(axbz - bxaz)

c2(axbz + bxaz) - c1(aybz + byaz)
  ,

z1   =   
bz(cx - cx  cos(ϕ ∆) + cy  sin(ϕ ∆))

axbz - azbx  cos(ϕ∆) + azby  sin (ϕ∆)
   ,

z2   =   z1  
az - cz

bz - cz
   .            (3.20)

With these solutions, the world coordinates of point W may be calculated as in
Section 3.1. in (3.13).

3 . 2 . 2 Using Cylinder Coordinates

A different solution algorithm may be derived by following cylinder coordinate
representation. The specific rotation of the disc around the Z-axis can be easily
described using these coordinates. Here, a point is represented by coordinates (ϕ,

ρ, h)  with h as height, ϕ as angle between X-axis and projected straight line of

length ρ. It holds

X = ρ cos ϕ ,      Y = ρ sin ϕ ,        Z = h

ρ = √X2 + Y2    ,   ϕ = arctan 
 


 
Y

X  .            (3.21)

Here, a rotation R∆ around the Z-axis is defined by a vector addition. Let P be a
point. It follows

6  Solutions were calculated using MapleV , a mathematical symbol manipulation program.
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R∆ • Pcartesian   =   Pcylindrical    +    

 



 

ϕ∆

0

0

  .                        (3.22)

The "Cartesian equation" (3.16) results into its "cylindrical pendant"

     

 




 


arctan 

 


 
Z1ay - cy

Z1ax - cx

√(Z1ax - cx)2 + (Z1ay - cy)2

(Z1az - cz)

   =    

 




 


arctan 

 


 
Z2by - cy

Z2bx - cx

√(Z2bx - cx)2 + (Z2by - cy)2

(Z2bz - cz)

+     

 



 

-ϕ∆

0
0

 .               (3.23)

Theorem 3.2*: For reconstruction, the following equational system can be
used,

Z1az      =     Z2bz   ,        (3.24.1)

(Z1ax - cx)2 + (Z1ay - cy)2     =     (Z2bx - cx)2 + (Z2by - cy)2 ,      (3.24.2)

ϕ∆     =     arctan 
 


 
 

Z 2by - cy
Z2bx - cx

    - arctan 
 


 
 

Z1ay - cy
Z1ax - cx

   .        (3.24.3)

Unknowns Z1 and Z2 may be calculated from (3.24.1-2). Therefore, (3.24.1)
may be solved for Z2  ,

Z2 = Z1  
az
bz

  ,                        (3.25)

this will be used in (3.24.2), leading to

Z1     =     2  
  
 


 
axcx + ay cy - bx  

az
bz

   cx   -  by    
a z
bz

    c y

 


 
ax

2 + ay
2  -  

 


 
bx  

az
bz

2
 -  

 


 
by  

az
bz

2
 .        (3.26)

By these results for Z1 and Z2 , angle ϕ∆ follows from (3.24.3). World point W
will be calculated as before using (3.13).
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4 EXPERIMENTAL RESULTS

The complete surface reconstruction process has been implemented and tested on
Sun Sparc Stations. The tasks are separated into several modules like camera
calibration, motion vector calculation and depth recognition.

4 .1 Real-Time Aspects

The non-recurring calibration takes less than one second for the used set of 75
calibration points, including the optimization for lens distortion.

The reconstruction algorithms were implemented straightforward,
following Theorems 3.1, 3.2 or 3.2*, and having time complexity in class O(N),
where N denotes the number of motion vectors (u, v) which are not equal to zero.
For each vector, the same process is repeated, i.e. vectors are considered to be
independent features. Assume that a vector field is already given for 512 x 512
pixels. Then, if ϕ∆ is known, the computation of depth for all 512 x 512 pixels

takes less then one second. If ϕ∆ is unknown it takes twice as much.
For a sequence of several images, for all vectors describing motion of the

same surface point, theoretically only one vector would be sufficient for
calculating the depth of this surface point. Because of digitized disparities and
erroneous vector fields, the average of depth results for all given vectors would
improve the reconstruction quality, e.g. by finer depth resolution. But, for
improved algorithmic complexity, all vectors related to the same surface point
may be combined sequentially, and depth may be calculated for this resulting
vector at once reducing the runtime.

Both algorithms, with known rotation angle and without known angle,
could be highly optimized by lookup tables and a massive parallel implementation
would be possible. Thus, starting with motion vectors, reconstruction of depth
can be realized in real time.

Computation of corresponding points, features, motion fields etc. will
depend upon image data and selected methods. For real-time realization of corres-
pondence mappings, parallel implementations of matching strategies may be the
solution, see [Koschan/Rodehorst 1995].

4 .2 Optimization of Calibration Object

A calibration object has to be used for performing camera calibration which
physically represents a specific geometric configuration of a finite set of
calibration points (dots on the calibration object). Following [Tsai 1986], two
cases were considered: all calibration points are coplanar, or may be in arbitrary
position in several calibration planes. For improving time complexity of



Shape Reconstruction for Rotational Motion 13

calibration processes, the number of calibration points has to be minimized such
that calibration is still "close to optimum".

The non-coplanar case did prove to be practically "more suitable".
Therefore, synthetic calibration points were assumed and used for a quantitative
evaluation of calibration, see Tab. 1. Real camera data from the product data sheet
were used. For measuring errors, the distances were calculated between assumed
calibration point positions and positions after backprojection, using calibration
results. Then, these distances may be used to define different error measures. A
normal distribution of errors in positioning synthetic calibration points was used
during the repeated process of calculating calibration errors, see Tab. 2.

Calibration parameter Synthetic dataset Calibration results
Translation                    Tx 80.0 mm 77.998 mm

Ty 100.0 mm 100.08 mm
Tz 8000.0 mm 7999.535 mm

Rotation                     Yaw 60.0 deg 59.994 deg
Pitch 20.0 deg 20.002 deg
Roll -5.0 deg - 5.003 deg

Focal length B 32.0 mm 32.016 mm
Scaling factor sx 1.020 1.020

Distortion coefficients   κ1 -1.0 • 10-5 1
mm2 -1.5 • 10-7 1

mm2

                                κ2 -1.0 • 10-5 1
mm2 -2.7 • 10-6 1

mm2

Table 1: Calibration results of a synthetic dataset under noisy conditions. The
3D world coordinates varies 0.5 mm and the image coordinates 0.3 pix.

Error measures Fig. 3a Fig. 3b
Mean of Projection 0.564 pix 0.459 pix
Mean of Backprojection 0.268 mm 0.232 mm
Standard deviation of Projection 0.337 pix 0.260 pix
Standard deviation of Backprojection 0.141 mm 0.163 mm

Table 2: Error measures for real camera calibration

In general, increasing the number of calibration points leads to improved
calibration results. But, about 20 calibration points in a single calibration plane are
already close to optimum. For the number of calibration planes, minimum error
was measured at about 4 calibration planes. Here, error increases slightly again
for more than 4 planes.
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Figure 2: Calibration object with two faces not covering the image (left).
Object with three faces with good covering of the image (right). Calibration
points were detected, calibration was performed and then these points were
backprojected into the image (crosses). Based on calibration, also the rotating
disc was backprojected (grid texture). In the left image, an error is visible,
where the grid does not match the border of the rotating disc.

      

Figure 3: Ideal depth map (left) of a cube and depth map as calculated using
the straightforward solution method described in Section 3.2.1.

For the calibration of real objects an "open cube" was used consisting of three
square faces, orthogonal by pairs, with 25 calibration points on each face. For
measuring positions of calibration points in digitized images, at first each
calibration point could be detected as a circular shaped region with diameter of
about 4 pixel, then moments were used to calculate the centroid of such a region.
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Such centroids were used as subpixel accurate positions of projected calibration
points in the image plane. For obtaining best calibration results, the calibration
object should cover the complete image, see Fig. 2.

     

      

Figure 4: A plaster statue on the rotating disc, optical flow field calculated by
the method of [Anandan 1987], reconstructed depth map using these vectors,
and 3-D visualization of this depth map.

4 .3 Results of Surface Reconstruction

In experiments, the method based on knowledge of rotation angle did prove to be
robust for any 2-D motion of point C1 into C2 within the image plane. But, both
approaches dealing with the case of unknown rotation angle did not work if the
direction of the motion vector (u, v)  of point C1 into C2  is "nearly parallel" to
image rows or image columns, i.e.
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u
v  » 1  or    

u
v  « 1 .               (4.1)

This is illustrated by the missing depth values (white stripes) in the right picture
of Fig. 3. So far, no mathematical explanation is available for this "bad behavior"
of methods using no knowledge about rotation angle.

As final conclusion, a two-step procedure is proposed. First the method
with unknown rotation angle is used for calculating the unique (!) rotation angle:

For all corresponding pairs C1  and C2  in the motion vector field the
rotation angle is calculated. Then, for all these resulting angles a certain mean
value is derived as unique rotation angle ϕ∆.

Then, for this angle the method with known rotation angle may be used to
calculate depth values for all pairs of corresponding points  C1 and C2.

      

      

Figure 5: Synthetic 3-D object, its motion vector field simulating the rotating
disc, reconstructed depth map, and 3-D visualization of these depth values.
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In Fig.4 it is illustrated what quality of shape or depth calculation was obtainable
in our experiments. Comparing many point-based differential methods for
computing optical flow, the method by [Anandan 1987] was chosen to behave
best under the given (!) conditions. For 3-D visualization of the depth map, depth
values were smoothed.

If (!) motion vector fields would be correct, then the reconstruction
method described in Section 3 will lead to exact object surfaces. Fig. 5 illustrates
this for a synthetic object where the motion vector field (simulating the rotating
disc) was available. By adding noise to these ideal motion vector fields it becomes
clear that small distortions will have great influence on the reconstructed surfaces.
Altogether, optical flow computation will not lead to complete surface reconstruc-
tion within acceptable limits of quality. But, for computing singular point po-
sitions in 3-D or for generating some "rough drafts", this method might be of
some practical value.

5 CONCLUSIONS

The used method for camera calibration may be highly recommended because of
its accuracy and robustness. It was used also for surface reconstruction based on
structured light (where reconstruction is possible within acceptable limits of
quality). It is suggested to extend this method for estimating directions to point
light sources (this is necessary for photometric procedures).

Viewing polyhedral objects (boxes etc.) on the disc, for sparse surface
points as corners or points on edges which are about orthogonal to the direction
of rotation, very accurate measurements of 3-D positions could be obtained.

For combining sparse but accurate surface point positions (fixation points)
with rough surface drafts, as resulting, e.g. from photometric methods,
combinations in Fourier space of high frequencies of photometric results, and low
frequencies of motion analysis results may be suggested.
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