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Summary: This paper proposes a high resolution video sensor for the 3D reconstruction of architec-
tural models from multiple image sequences. The hybrid system unifies triangulation methods of 
spatial stereo with tracking methods of temporal stereo. We describe an efficient spatial image match-
ing algorithm, which is based on trinocular image rectification and semi-global optimization. The 
motion of the video sensor is estimated using temporal feature tracking and allows the integration of 
dense point clouds. First experimental results are shown for images of a real scene. 
 
Zusammenfassung: Verfeinerung von Gebäudemodellen mittels terrestrischer Videosequenzen eines 
Trifokalsensors. In diesem Beitrag wird ein hochauflösender Videosensor für die 3D Rekonstruktion 
von Architekturmodellen aus mehreren Bildfolgen vorgestellt. Das hybride System vereinheitlicht 
Triangulationmethoden des räumlichen Stereos mit Verfolgungsmethoden des zeitlichen Stereos. Wir 
beschreiben ein effizientes Bildzuordnungsverfahren, das auf einer trinokularen Bildkorrektur und 
semi-globaler Optimierung basiert. Die Bewegung des Videosensors wird durch zeitliche Merkmals-
verfolgung geschätzt und erlaubt die Integration dichter Punktwolken. Erste experimentelle Ergebnis-
se für Bilder einer realen Szene werden vorgestellt. 

1 Introduction 
Some interesting applications of urban 3D geographic information systems (GIS) require a level of 
detail (LOD), which is currently not available using airborne data. Therefore, an approach to acquire 
and/or refine architecture models from terrestrial image sequences is proposed. We develop a fully 
automated prototype system to recover 3D models of several buildings based on three moving video 
cameras (trifocal sensor). In general, digital video cameras provide dense image sequences that 
contain a high potential for photogrammetric application which is presently not fully used. Video 
sequences for scene modeling and various possible applications are treated by (AKBARZADEH et al. 
2006; POLLEFEYS 2004; Koch 2003). When dense video sequences are used for object reconstruction 
the correspondence problem does not have to be solved by wide-baseline matching any longer but 
tracking and motion estimation methods such as affine feature tracking (SHI & TOMASI 1994), visual 
odometry (NISTÉR 2006), simultaneous localization and mapping SLAM (MONTEMERLO 2003) and 
optical flow estimation gain importance.  
Reconstructing a three-dimensional model from a single video sequence is often conducted with the 
structure-from-motion SFM approach. In close-range photogrammetry systems have been mounted on 
vans in order to acquire GIS data semi-automatically (TAO 2000). First attempts on hybrid algorithms 
unifying triangulation methods of spatial stereo with tracking methods of temporal stereo are 
presented by (NEUMANN & ALOIMONOS 2002). They propose multi-resolution subdivision surfaces for 
spatio-temporal stereo. Algebraic projective geometry (HARTLEY & ZISSERMAN 2004; FAUGERAS & 
LUONG 2001) provides an effective mathematical framework to obtain geometrically precise 
information from partially calibrated cameras with varying parameters.  
The main novelty of our approach is an exhaustive integration of feature extraction, image matching, 
orientation for video sequences, as well as modeling of surfaces with their reflectance characteristics. 
We combine calibrated and relatively oriented trifocal image geometry with temporal tracking in 
video sequences to generate a photogrammetric model (ZHENG et al. 2007). In this scenario, the 
photogrammetric model is partially reconstructed from the neighboring images of the triplet, partially 
from the preceding and following images of the sequence. Due to two facts the trifocal video system 
allows generating a reliable photogrammetric model for each image triplet with little computational 

 



effort. First, each candidate triplet of corresponding points has a high potential to be correct as the 
matching between images of the triplet is stabilized by a tracking approach for points in each of the 
video sequences. Second, the trifocal tensor allows checking each triplet based on the relative 
orientation of the cameras. Thus, the system basically acquires a three-dimensional image which is 
used in a tracking procedure.  
Practically useful results can only be derived when the accuracy achieved fulfills photogrammetric 
standards. At the same time, only an automatic processing would ensure to make use of the full 
potential of video sequences. However, the computational requirements to deal with hand-held 
markerless video streams exceed the capabilities of real-time systems. Therefore, the proposed 
approach is designed for off-line processing of real-time recorded digital video. The organization of 
the paper is as follows. In section 2, the trifocal video sensor is briefly introduced. The efficient 
spatial image matching algorithm, which is based on trinocular image rectification and semi-global 
optimization, is explained in the subsequent sections 3 and 4. The estimation of the camera motion 
and the registration of the 3D point clouds using temporal feature tracking are discussed in section 5. 
First experimental results for images of a real scene are presented in section 6 and finally we conclude 
and state possible improvements. 

2 System Overview 
In the actual stage the trinocular stereo rig consists of three Scorpion color cameras from POINT GREY 
RESEARCH (PTGrey). The image sensor is based on a progressive scan CCD with square pixels. Each 
camera is able to acquire and transmit a high resolution digital video sequence (1384×1038 pixels) 
with up to 19 bayer tiled full frames per second using firewire (IEEE 1394a). The cameras are 
synchronized with an accuracy of less than 1 ms. The effective data rate of the three cameras is 
around 80 MB and exceeds the bandwidth of one firewire channel as well as the writing performance 
of a regular harddrive. Therefore, a desktop PC with three independent 1394a-channels and a RAID-0 
array consisting of four SATA disks was assembled. The system is designed to capture video with a 
maximum data rate up to 200 MB/sec for more than three hours using a battery based power source 
(see Fig. 1). 

  
Fig. 1: a) Trinocular stereo rig with mounted Scorpion cameras and b) the 
mobile image acquisition system. 

For a flexible image acquisition, we selected CCTV-lenses with variable principal distance between 6 
mm and 12 mm. We discovered a significant radial lens distortion up to 80 pixels. Therefore, we 
model radial errors with 3 additional coefficients and resample all images using bicubic interpolation. 
The undistorted images simplify the geometric imaging model to a line-preserving pinhole camera. In 
addition to our stationary control point field we developed a mobile calibration rig (see Fig. 2). It 
allows an on-site calibration in few seconds due to an automatic marker detection and fitting 
algorithm for parameterized 3D models (LOWE 1991). 

 



 
Fig. 2: Image of the mobile calibration rig with 
color coded results of the 3D model fitting. 

 

3 Trinocular Rectification 
This section describes the geometric transformation of an uncalibrated image triplet to the stereo 
normal case (HEINRICHS & RODEHORST 2006). In case of a trinocular rectification, the images are 
reprojected onto a plane, which lies parallel to the projection centers. The proposed trinocular 
rectification method requires an image triplet with more or less L-shaped camera alignment. The 
camera configuration is arbitrary, but each projection center must be invisible in all other images. 
This condition is necessary, since otherwise the epipoles lie in the image and mapping them to 
infinity will lead to unacceptable distortion of the images. 
Furthermore, we assume non-degenerate camera positions, where the camera centers are not collinear, 
because collinear setups can be rectified by chaining a classical binocular rectification approach. 
Additionally, a common overlapping area and at least six corresponding image points are necessary, 
so that the trifocal tensor, the fundamental matrices and the epipoles can be determined. The result 
consists of three geometrically transformed images, in which the epipolar lines run parallel to the 
image axes. The resampling due to radial distortion and for trinocular rectification is processed in one 
step to minimize image blur.  

3.1 Camera Setup 
A given image triplet consists of the original images b (base), h (horizontal) and v (vertical). 
Subsequently, we denote the rectified images b ,  and v . The rectification tries to fit any image 
triplet to an L-configuration. This setup has the following properties: 

% h% %

• The epipolar lines of image b and image h correspond with their image rows. 
• The epipolar lines of image b and image v correspond with their image columns. 
• The epipolar lines of image h and image v have a slope of minus unity. 

The last property has the advantage, that the disparities between corresponding points in b  and 

 are equal. The basic idea of rectification is to map the epipoles e between the images b, h and 
v to infinity. 

h↔% %

b v↔% %

3.2 Linear Rectification 
The initial task is to determine the relative orientation of the images. The fully automatic approach 
use interest point locations from a modified FÖRSTNER operator (RODEHORST & KOSCHAN 2006) in 
combination with the SIFT descriptor (LOWE 2004) for matching. We have implemented a robust 
estimation of the trifocal tensor T, which describes the projective relative orientation of three 
uncalibrated images. It is based on a linear solution of six points seen in three views (HARTLEY 2004, 
MAYER 2003) followed by a non-linear bundle adjustment over all common points. To handle the 

 



large number of high resolution images the computationally intensive RANSAC algorithm for robust 
outlier detection has been replaced by a faster evolutionary approach called Genetic Algorithm 
Sampling Consensus GASAC (RODEHORST & HELLWICH 2006). Note that the fundamental matrices 
derived from this tensor are not independent and have only 18 significant parameters in total. Let Hb, 
Hh and Hv be the unknown 3×3 homographies between the original and rectified images. These 
primitive rectifying homographies can linearly be determined from the compatible fundamental 
matrices with 6 degrees of freedom left. A detailed derivation is given in (HEINRICHS & RODEHORST 
2006). 

3.3 Imposing Geometric Constraints 
We recommend to calculate values of the remaining 6 degrees of freedom in the following order: 

• Finding proper shearing values 
• Determine a global scale value 
• Finding right offset values 

The shearing of images can be minimized by keeping two perpendicular vectors in the middle of the 
original image perpendicular in the rectified one. This results in quadratic equations which have two 
solutions. The result with the smaller absolute value is preferred. On the one hand, the global scale 
should preserve as much information as possible, but on the other hand produce small images for 
efficient computation. Therefore, we adjust the length of the diagonal line through b  to the original 
length in b. The offsets shift the image triplet in the image plane. To keep the absolute coordinate 
values small, the images should be shifted to the origin. 

%

 

 
Fig. 3: a) Overlaid image triplet of Stuttgart palace with robust feature matches and b) recified 
normal images. 

4 Trinocular Image Matching 
After geometric transformation of the given image triplets using the proposed rectifying 
homographies, the correspondence problem must be solved using dense stereo matching. To find 
corresponding image points which arise from the same physical point in the scene, we suggest a 
modified semi-global matching (SGM) technique (HEINRICHS et. al. 2007, HIRSCHMÜLLER 
2005/2006). The normal images substantially simplify and accelerate the time-consuming 
computation. After rectification,  

( ) ( )( ), ,b x y h x D x y y≈ +% % ,    and   ( ) ( )( ), , ,b x y v x y D x y≈ +% %  (1) 
hold where x is the column coordinate, y the image row coordinate and D is called disparity map. The 
disparity at the current position (x,y) is inversely proportional to the depth of the scene. In addition to 
that, we assume that an estimation of the smallest and largest displacement is roughly given. This 

 



defines the search range  for a reference point in b  along the corresponding rows and 
columns in h  and v . 

min max[ ,d d ] %
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4.1 Local Similarity Measures 
Area-based matching is a widely used method for dense stereo correspondence. The similarity is 
computed statistically on the rectangular neighborhood (matching window) around the examined 
pixel. The algorithm searches at each pixel in reference image b  for maximum correlation in the 
horizontal image  and the vertical image v  by shifting a small window pixel-by-pixel along the 
corresponding epipolar line. The statistically based normalized cross correlation NCC measures the 
linear relation between two image windows a and b normalizing over all intensity changes. The 
modified NCC (MNCC) 
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handle homogeneous areas better by adding the two denominator variances instead of multiplying 
them (EGNAL 2000). We precalculate the means and the means of squared intensities to accelerate the 
computation significantly. Finally, we transform the correlation coefficient range to [0,1]. Due to the 
proposed trinocular rectification, the disparities in the horizontal and vertical image pairs are 
identical. Thus, the position of a matching candidate in image b  and h  is linked exactly to a position 
in . Now, the local matching costs can simply be averaged. This increments the computational costs 
for the additional third image only by a linear factor. Additionally, the matching is more robust, 
because the linked cost function has less local minima than the individual cost functions for the image 
pairs. 
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4.2 Semi-Global Optimization 
Generally, the calculation of local costs is ambiguous and a piecewise smoothness constraint must be 
added. In (HIRSCHMÜLLER 2005/2006) a very simple and effective method of finding minimal 
matching costs is proposed. SGM tries to determine a disparity map D such that the energy function  
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is minimal. The first term calculates the sum of all local matching costs using the inverse correlation 
coefficient ρ  of the image windows a and b around the current position (x, y) and the related 
disparity in D. The subsequent terms require a Boolean function T that return 1 if the argument is true 
and 0 otherwise. Explained intuitively, E(D) accumulates the local matching costs with a small 
penalty Q1 = 0.05, if the disparity varies by one from the neighbored disparities. If the disparity differs 
by more than 1, a high penalty Q2 ∈ [0.06, 0.8] is added. The actual value of Q2 depends on the 
intensity gradient in the original image.  Long gradients result in a low Q2 while short gradients result 
in a high Q2. This prevents depth changes in homogeneous regions. There are only two different 
penalties for the depth changes. First, Q1 ensures that regions with a slightly changing depth are not 
penalized too hard. Second, if depth changes in the scene occur, the size of the discontinuity is not 
correlated to the penalty.  
Computing the minimum energy of E(D) leads to NP-hard complexity, which is difficult to solve 
efficiently. Following (HIRSCHMÜLLER, 2005), a linear approximation over possible disparity values 

 is suggested by summing the costs of several 1D-paths L through the search space 
towards the actual image location (x1, y1). A path L with 

min max[ ,d d d∈ ]
1i n= K  steps is recursively defined and the 

number of accumulated paths should be at least eight. We introduce a threshold for the local matching 

 



costs, to penalize dissimilar candidates. If the correlation coefficient ρ  is lower than a certain 
threshold the local matching costs is set to a high constant value. If the minimal costs for the best 
matching candidate is higher than this value the match is marked as invalid. 
One disadvantage of SGM is the required space for all correlation values, which is needed to compute 
all non-horizontal trails L. The memory for this buffer is O(n³) depending on the image width, height 
and disparity search range. We save memory by reducing the length of the trails. Since the influence 
of previous L after a disparity discontinuity is very low, we need the complete path only for 
homogeneous areas. Except for trails along the epipolar lines, we limit the length of L to a small value 
(e.g. five). Therefore, the buffer size reduces to O(n²), which allows to process larger images.  
An important issue for image matching is the stability of the found correspondence. If a 
correspondence is unstable, this is either an occlusion or the image significance is very low, e.g. in 
homogeneous regions or periodic patterns. To enforce stability, we check the left/right consistency 
(LRC) of the bidirectional correspondence search. A robust matching process should produce a 
unique result. On the one hand, LRC detects most stereo errors and depends not critically on 
thresholds. On the other hand, LRC does not report an error if the two matching directions mistakenly 
agree and one extra matching process is required. Nevertheless, the computational expense is 
tolerable for many applications. LRC leads to two disparity maps Di, one for each image permutation. 
If the matched point in the second image points back to the original one in the first image the match is 
validated 

( )1 2 1( , ) ( , ), 1D x y D x D x y y+ + ≤ . (4) 

Otherwise it is invalidated or, in case of multi-image matching, other permutations of the disparity 
map must verify this match. In addition, using the reverse direction guaranties that all matched points 
are one-to-one correspondences, because doubly matched points can verify only one location. 

4.3 Hierachical Approach 
Based on the original image resolution a number of reduced images are computed using a scale factor 
fi. The search range can be scaled as well by fi, so that the computational complexity drops 
dramatically from the actual scale level to the next smaller one. The images are processed from the 
lowest resolution to the highest one. Only image points of the first layer have to be checked at every 
possible location within the search range. To reduce the number of candidates in the succeeding 
layers the potential information of the previous layer is used and refined. If displacement information 
from a previous layer is available, the number of candidates can be reduced by restricting the possible 
range. The valid candidates fulfill at least one of three criteria: 

• Accuracy improvement: The information from the previous layer has an accuracy of ±s⋅fi, 
where s is the distance from one candidate to the next one and fi is the scale factor from the 
previous layer to the actual one. Possible matches within this accuracy range must be 
checked. 

• Unmatched points: Points in the target image, which are already matched in a previous layer, 
should be excluded from further matching to avoid double matches. 

• Edge preservation: If points of the previous layer lie on a surface edge, the depth value of 
the associated points in the actual layer is bounded by the depths of the two neighboring 
points. It might happen that not all of this information is available. 

Fig. 4 illustrates this technique. The diagonal strip represents the search space of the original layer. 
Every column is the search space for a pixel position. The red line represents the selected 
correspondence. The thin diagonal stripe around the red line is the accuracy improvement from the 
first criterion. Vertical lines are unmatched positions in the previous layer. Therefore, the search 
space at these positions has to be analyzed completely to find possible new matches. 

 



 
Fig. 4: Sample of the reduced search space of corresponding image rows. 

 
Horizontal lines represent unmatched points from the second criterion. The small vertical strips are 
caused by the edge preservation of the third criterion. Candidates in the black area are excluded by the 
hierarchical approach. This shows the efficiency of the proposed method. The search space is reduced 
to approximately 25% of the original size. After calculating the local costs for each candidate our 
modified version of SGM calculates the best match for the given position. 

5 Camera Path Estimation and 3D Point Cloud Registration 
The temporal image correspondences ′↔x x  are determined using the KLT tracker (SHI & TOMASI 
1994). The feature-based approach uses local similarity measures and the temporal epipolar geometry. 
With a hierarchical approach using image pyramids the estimation of the orientation on a coarse level 
allows to improve the matching on a finer level. We extend the approach by filtering outliers using a 
temporal trifocal geometry (see Section 3.2). After the matching process we are able to orient the 
images fully automatically. Furthermore, the minimal 5-point algorithm (NISTÉR 2004) computes the 
essential matrix E of a camera pair even from correspondences on critical surfaces, i.e. planes. 
However, the presence of false correspondences in the tracking data and the unstable computation of 
eigen vectors (BATRA et al. 2007) require a robust computation of the essential matrix via GASAC. 
This procedure results in a set of succeeding camera pairs with a uniform base length. 
The registration of temporal image pairs using the estimated camera path is realized following 
(FITZGIBBON & ZISSERMAN 1998). We are given temporal image pairs, each with an estimated 
essential matrix E and a set of common image points ′↔x x . The goal is to register the spatial 
reconstructions into the same coordinate system by determining a spatial homography H which 
results in the best overlap of the two reconstructions. Since a spatial homography has 15 degrees of 
freedom and a projection matrix only 11, two corresponding cameras P and P' for a common image 
can be exactly registered by 1−′=P P H . This constraints eleven parameters of H. The remaining four 
parameters can be found by minimizing the algebraic distance of the triangulated object points 

 subject to the constraint ( ,d ′X HX ) ′=PH P . The solution is a member of the 4-parameter family of 
homographies 

( ) + ′= +H v P P hvT  (5) 
where h is the nullvector and P+ the pseudoinverse of P. A direct solution for v can be obtained using 
a system of 3 equations per object point: 

′ =bX v cT  (6) 
where the 3-vectors b and c are defined by b h 4 4k k X h X k= − , 4 4k kc X a X ak= −  and . The 
direct solution minimizes an algebraic error with no direct geometric or statistical meaning, so we 
refine the reprojection error using bundle adjustment. 

+ ′ ′=a P P X

 



6 Experimental Results 
First results of the proposed method are presented for the Stuttgart palace in Germany. Figs. 5 and 6 
show that it is possible to compute a realistic 3D architecture model utilizing high resolution video 
sequences. For these experiments, we use partially calibrated image triplets but eliminate radial 
distortion in advance. The hierachical approach reduces the computational costs to 25 percent without 
significant loss in accuracy. The dense matching of one image triplet with 1.4 mega pixels was 
completed in 2 minutes on a 2.4 GHz dual core CPU. 
 

  
Fig. 5: a) The resulting disparity map of the Stuttgart palace using the modified 
SGM and b) top-view on the point cloud of the reconstructed corner. 

 

  

  
Fig. 6: Available architecture model of the Stuttgart palace from aerial images improved by manual 
texture mapping (top) and 3D point clouds acquired automatically with the proposed trifocal sensor 
system using one image triplet (bottom). 

 
 

 



7 Conclusions and Future Work 
In this paper, we introduce a high resolution video sensor for the 3D reconstruction of architectural 
models. The hybrid system unifies triangulation methods of spatial stereo with tracking methods of 
temporal stereo. We presented a linear method for trinocular rectification of uncalibrated images, 
which can be solved in closed form with 6 degrees of freedom. In a post processing stage, proper 
geometric constraints are selected to minimize projective distortion. The proposed dense matching 
algorithm is a fast and effective adaption of the SGM for image triplets. Combining the local costs of 
an image triplet to a single value stabilizes the matching, especially in regions with repetitive patterns 
like bricks, grids or stripes. The motion of the video sensor is estimated using temporal feature 
tracking and allows the integration of dense point clouds. First experimental results for image 
sequences of a real scene demonstrate the potential performance. The resulting photogrammetric 
models are combined as a metric model of the scene. The approach proposed is generic from a 
methodological point of view and allows various applications. Nevertheless, architectural models 
consist of planes, polyhedrons and freely formed surfaces. At this occasion geometric primitives, like 
planes and polyhedrons, should be fitted to the large point cloud to increase the accuracy and spare 
memory. Such systematic generation of a photogrammetric model from several trifocal views gives a 
digital video system its full potential. 
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