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ABSTRACT: 
 
The fully automatic and reliable calculation of the relative camera pose from image correspondences is one of the challenging tasks 
in photogrammetry and computer vision. The problem has not been solved satisfactorily, e.g. in case of critical camera motions or 
when observing special point configurations. Furthermore, some methods provide multiple solutions for the relative orientation. In 
this paper we compare various techniques, analyze their difficulties and give results on synthetic and real data. We show that in case 
of noisy data pose estimation of a single camera remains difficult. The use of multiple calibrated cameras that are fixed on a rig 
leads to additional constraints, which significantly stabilize the pose estimation process. 
 
 

1. INTRODUCTION 

Camera pose estimation from image correspondences is one of 
the central tasks in photogrammetry and computer vision. The 
recovery of the position and orientation of one camera relative 
to another can be used for binocular stereo or ego-motion 
estimation. From an algebraic point of view the fundamental 
matrix describes the projective relation between two 
uncalibrated views. The essential matrix is important for motion 
analysis with a calibrated camera, as it contains the rotation and 
translation up to an unknown scale factor. The automated 
visual-based motion estimation using thousands of video frames 
requires an extremely accurate and reliable relative orientation 
method to handle extensive and intricate camera paths. We 
would like to point out that without the presence of noise all 
tested methods perform well. Nevertheless, it is very difficult to 
obtain stable results for all frames under real conditions with 
noisy image measurements. Therefore, we propose additional 
constraints to avoid false estimations. In literature several 
algorithms for direct relative orientation exist. In (McGlone et 
al., 2004) Förstner and Wrobel give an overview of various 
methods, which is updated in Table 1. A detailed description of 
recent developments can be found in (Stewénius et al., 2006) 
and degenerate configurations, like 

a) coplanar object points and ruled quadric containing the 
projection centers or 

b) orthogonal ruled quadric, especially cylinder containing 
the projection centers, 

are discussed in (Philip, 1998). 
 

Method Points Deg. Solutions 

Hartley, 1997 ≥ 8 a) 1 

Hartley & Zisserman, 
2004 ≥ 7 a) ≤ 3 

Philip, 1996/98 ≥ 6 a) 1 

Pizarro et al., 2003 ≥ 6 b) ≤ 6 

Nister, 2004 
Stewénius et al., 2006 
Li & Hartley, 2006 

≥ 5 b) ≤ 10 

Table 1: Direct solvers for relative orientation 

An interesting aspect of the three minimal 5-point algorithms 
and the 6-point algorithm of (Pizarro et al., 2003) is their 
stability, even if points from coplanar objects are observed. 
This is especially convenient in architectural environment, 
where many coplanar objects appear. In this paper we compare 
all direct solvers of Table 1 and a non-linear solver (Batra et al., 
2007) to determine their strengths and weaknesses targeting an 
automatic approach for real world setups. Four implementations 
are based on the original MATLAB code provided by 
(Stewénius, 2004). This paper is organized as follows: First, the 
used methods are shortly introduced, followed by some notes 
on data conditioning. Section 3 deals with the selection of a 
unique solution from multiple results. The evaluation of the 
solver using synthetic data is described in section 4, followed 
by a discussion of the results. Section 6 introduces additional 
constraints for multiple cameras. The results using real data are 
shown in section 7. Finally, a discussion and conclusion of the 
results closes the paper.  

 
 

2. RELATIVE POSE RECOVERY  

In general, all methods analyze the motion or relative 
orientation of calibrated cameras using the essential matrix E.   
The main property of E is the coplanarity or epipolar-constraint  

0i i′ =u EuT  (1)

in terms of the normalized coordinates  
1

i
−=u K xi ′    and     1

i i
−′ ′=u K x (2)

of corresponding image points xi ↔ xi' with known calibration 
matrices K and K'. This linear relation is also known as the 
Longuet-Higgins equation (Longuet-Higgins, 1981). The 
essential matrix has additional algebraic properties, e.g. the 
cubic rank-constraint 

det( ) 0=E  (3)

and the cubic trace-constraint (Demazure, 1988) 

2 trace( )− =EE E EE E 0T T   (4)



 

to ensure that the two non-zero singular values are equal. A 
complete list of necessary constraints can be found in (Batra et 
al., 2007). The linear 8-point algorithm for the computation of 
the fundamental matrix (Hartley, 1997) can be used to estimate 
the essential matrix as well. First, the algorithm uses eight 
linear equations of (1) with normalized coordinates to estimate 
E and afterwards, the additional constraints (3) and (4) must be 
enforced. If the singular value decomposition is 

1 2 3diag( , , )σ σ σ= ⋅ ⋅E U VT    for   1 2 3σ σ σ≥ ≥  (5)

then the closest essential matrix that minimizes −E E%  can be 
obtained as follows 

diag( , ,0)σ σ= ⋅ ⋅E U V% T  with   1 2

2
σ σσ +

= . (6)

However, the later insertion of the constraints may provide 
wrong estimations. (Stewénius et al., 2006) and (Šegvić et al., 
2007) mention that the 8-point algorithm has a forward bias, 
which leads to undesired camera motions. The 7-point solver 
(Hartley & Zisserman, 2004) uses seven epipolar-constraints (1) 
on the nine components of the essential matrix. An orthogonal 
basis for the two-dimensional null-space of these constraints is 
computed using singular value decomposition. Thus E can be 
written as 

1 1 2 2α α= +E E E     (7)

where Ei are the null-vectors for the epipolar-constraints row-
wise in matrix form. Since E can only be solved up to scale, we 
are free to set the scalar multiplier α2 = 1. Subsequently, the 
solution space is reduced using the rank-constraint (3), which 
gives a third-order polynomial equation in α1 with three 
possible solutions for the essential matrix. The linear 6-point 
solver (Philip, 1998) composes the nine third-order polynomial 
equations from the trace-constraint (4) into a 9×10 matrix and 
solves for the unknowns linearly. It provides a unique solution 
but is very sensitive to noise (Stewénius et al., 2006). The 6-
point method of (Pizarro et al., 2003) also composes the nine 
equations of (4) into a 9×10 matrix from which four rows 
corresponding to the largest singular values are selected. From 
these equations, a sixth-degree polynomial is computed with six 
possible solutions for E. The minimal 5-point algorithms 
(Nister, 2004), (Stewénius et al., 2006), (Li & Hartley, 2006) 
need only five point correspondences. In general, the solution in 
the four-dimensional null-space derived from the epipolar-
constraint (1) 

4
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is found using the nine polynomial equations from the trace-
constraint (4) and the polynomial equation from the rank-
constraint (3). The real-valued zero crossings of this tenth-order 
polynomial indicate 10 possible solutions for the essential 
matrix E. They can be found using Sturm sequences to bracket 
the roots (Nister, 2004) or an eigen-decomposition (Stewénius 
et al., 2006), which produces slightly better results. The 
approach of (Li & Hartley, 2006) computes the unknown 
parameters simultaneously instead of back-substituting and 
solving all the unknowns sequentially. Finally, a non-linear 
solver from five points (Batra et al., 2007) was evaluated. This 
technique also extracts the four-dimensional null-space (8). To 
avoid eigen-decompositions, this approach suggests a non-
linear optimization technique, e.g. Levenberg-Marquardt. This 
technique extracts the translation vector t = (tx,ty,tz)T from the 

essential matrix E using singular value decomposition (Wang & 
Tsui, 2000)  

=t E 0T . (9)

Note, that t is related to the second projection center C' with  

′= −t RC . (10)

The translation vector is used to parameterize a cost function, 
which enforces necessary constraints for the essential matrix. 
The state vector  

( )1 2 3 4, , , , , ,x y zt t tα α α α=b
T  (11)

consists of the scalars αi defining the solution within the four-
dimensional null-space and the three translation components. 
The cost function can be derived from the equation 

[ ] [ ]× ×
− =EE t t 0TT

, (12)

where []× denotes the skew-symmetric matrix of vector t. The 
nine elements of E depending on seven elements of b are stored 
in a 7×9 matrix A. Overall, nine of those matrices can be 
formed, three from equation (9) and six from (12). The non-
linear minimization task 
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starts with random values for αi. Since there are up to 10 
possible solutions and the null-space is generally non convex, 
this optimization should be iterated several times. For real-time 
applications this may not be suitable, but the technique can be 
used to improve the results obtained by direct solvers, which 
provide good approximation values.  
Hartley proved (Hartley, 1997) that the linear 8-point algorithm 
performs significantly better, if the input data is conditioned. 
This insight should be still important for minimal solvers (Li & 
Hartley, 2006). The normalization is done by translating the 
centroid of the measured image points to the origin and scaling 
them to a mean Euclidean distance of 2 , which can be 
combined into a similarity transformation T for the first and T' 
for the second image. Note, that the resulting relative 
orientation must be deconditioned before the essential 
constraints are enforced. In case of the minimum solvers or the 
non-linear algorithm, the four resulting null-vectors Ei must be 
deconditioned  

i i′=E T E T% T  (14)

before the root searching step (Šegvić et al., 2007). One might 
think that the data could be deconditioned as a final step, but 
this leads to false solutions as shown in (Hartley, 1997).  
 
 

3. CHOOSING THE RIGHT SOLUTION 

Most direct solvers provide multiple solutions for the relative 
orientation, except the linear solvers (Hartley, 1997) and 
(Philip, 1998). Up to 10 distinct physically valid solutions are 
possible (see Table 1). Although, in most cases the number of 
solutions varies between one and four, the correct solution is 
difficult to identify. Since the 7-point solver (Hartley & 
Zisserman, 2004) doesn’t enforce the trace-constraint (4), the 
similarity of the two non-zero singular values may indicate the 
solution. Furthermore, the 6-point method of (Pizarro et al., 
2003) doesn’t employ the rank-constraint (4), so that the 
smallest determinant value maybe analyzed. 



 

If no additional assumptions can be made, a possible criterion 
for choosing the right solution are the number of points, which 
lie in front of both cameras. A method to recover the twisted 
pair ambiguity and extract the projection matrices from E is 
described in (Nister, 2004; Hartley & Zisserman, 2004). Then, 
spatial object points are triangulated and their cheirality can be 
tested. Since several solutions may have all points in front of 
both cameras, this criterion is not sufficient. Furthermore, the 
cheirality-condition suffers from three disadvantages.  
First, if there is no camera translation, the points can not be 
triangulated. To overcome this issue, a threshold tmov for 
detecting enough motion (Weng et al., 1989) can be introduced: 

 0 , , movt
′×

′⎡ ⎤ ⎡ ⎤ <⎣ ⎦ ⎣ ⎦ ′⋅
u Ru

P = I P = R t
u u

 (15)

Second, the triangulation of object points can only be 
performed with a sufficient baseline to depth ratio. For 
example, noisy image points may cause the triangulated object 
point to flip behind the camera. This can be avoided, by testing 
points with a certain proximity to the camera. Third, if many 
points are used for a cheirality test, the triangulation is 
computationally intensive. If more than five correspondences 
are available, the additional information should be used to find 
the right solution. We compute the first-order geometric error 
(Sampson-distance) for all point correspondences ui ↔ ui' 

( )
( ) ( ) ( ) ( )

2

22 2
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(16)

where ( )x
2 represents the square of the vectors x-component. 

Finally, derror  should be minimal for the correct solution. 
In our approach we used a combination of these criteria: First 
the translation is examined according to (15) and then the five 
points are tested to lie in front of both cameras. If there are 
multiple solutions with all points in front, the epipolar distance 
of all available correspondences is evaluated. 
 
 

4. EVALUATION OF THE ALGORITHMS 

Subsequently, we analyze all techniques with respect to their 
behavior under Gaussian noise, the selection strategy for 
multiple solutions, over-determined estimation and data 
conditioning. The evaluation was performed using synthetically 
generated data with ground truth. The camera motion between 
two views is randomly chosen from a uniform distribution. To 
generate the random numbers, we use the advanced mersenne 
twister (Matsumoto & Nishimura, 1998).  
The camera translation is scaled to 1 and the three rotation 
angles are constrained between -45 and 45 degrees. Then, 100 
spatial object points are randomly generated in general position 
and projected into the images using the simulated cameras. If 
the known calibration matrices are applied (2), the normalized 
coordinates range from -1 to 1. The image coordinates are 
displaced with Gaussian noise. The standard deviation σ  
corresponds to an image with 1024×1024 pixels and the 
maximum Euclidean displacement is 2.4σ.  
We ensure that the selected point correspondences are not 
collinear and avoid degenerate configurations of minimal sets 
with the constraints proposed by (Werner, 2003). For allowed 
configurations, the epipoles must lie in domains with piecewise-
conic boundaries. An example for estimating the relative 
orientation is shown in Figure 1. To obtain statistically 
significant results, every technique is examined 100 times. The 

evaluation of the selection criteria is done with the 5-point 
algorithm of (Nistér, 2004). Here, additional 100 random 5-
tuples are selected in each dataset and the best sample is taken 
as result. The experiments for over-determined computations 
are performed with the whole dataset of 100 points. Finally, the 
impact of data conditioning is evaluated for the 5- and 8-point 
algorithms with 100 random n-tuples in each dataset. The best 
solution according to the cheirality test and Sampson distance is 
selected. The deviation error of translation and rotation are 
measured in degrees. The included angle between the original 
and estimated translation direction gives an interpretable result. 
For rotation evaluation three unit vectors to the three axis 
directions ex, ey and ez are rotated using the original and the 
estimated rotation matrix. The error value is averaged over the 
three including angles of the resulting vectors: 

( )( )1 2
, ,

1 acos
3error i i

i x y z

r
∈

= ∑ R e R eT  (17)

We count all translations with an error less than 10 degrees and 
all rotations with an error less than 2 degrees (see Table 2). 
 

 
Figure 1:  Estimated relative orientation using normalized 

image pairs with overlaid epipolar rays (correct 
reference solution in red).  
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Figure 2:  Translation error in degrees of the direct 5-point 
solver (Nistér, 2004) for 100 runs. blue: σ = 0.07, 
yellow: σ = 0.5, red: σ = 0.9, green: σ = 1.3. 



 

Rotation Errors 
σ = 0.07 σ = 0.5 σ = 0.9 σ = 1.3 

Method 
cnt mean cnt mean cnt mean cnt mean 

Ground 
Truth 

100 
0.0860 

100 
0.7475 

100 
1.0872 

100
2.0434

Evaluation of Different Algorithms 
8-Point 90 2.2589 52 5.0803 32 5.1768 18 6.3161
7-Point 82 1.7805 42 4.0002 33 5.2407 24 6.3662
6-Linear 73 2.4829 38 4.4165 29 4.6610 16 5.7286
6-Pizzaro 78 1.0380 49 4.1056 39 4.5695 24 4.7601
5-Nistér 89 0.9935 67 3.1534 52 4.5321 50 5.4091
5-Stewénius 89 0.9935 67 3.1534 52 4.5321 50 5.4091
5-Li 89 0.9935 67 3.1534 52 4.5321 36 5.6712
5-Non-linear 30 0.7699 24 1.0879 32 1.5902 32 3.8587

Selection Strategy for Multiple Solutions 
Sampson S 100 0.2826 100 1.4059 94 2.3680 81 3.1766
Cheirality C 38 2.3562 36 4.1240 19 3.9483 15 4.9022
C-5 + S 100 0.2610 99 1.5168 99 2.2784 91 3.1963
C-all + S 100 0.2420 100 1.2317 96 2.2333 88 2.7443

Over-determined Solution 
8-Point 99 0.3966 96 1.8661 81 3.1579 62 4.5419
5-Nistér 70 2.9331 51 3.5674 52 3.4531 48 4.3646

Data Conditioning 
8-Uncond 99 0.3197 94 2.0592 83 3.3274 61 4.1966
8-Cond 98 0.3433 93 2.0068 84 3.0240 64 3.6310
5-Uncond 100 0.2692 98 1.2245 95 2.2597 90 2.9573
5-Cond 100 0.2314 100 1.3404 97 2.1464 92 2.8859

 
Translation Errors 

σ = 0.07 σ = 0.5 σ = 0.9 σ = 1.3 
Method 

cnt mean cnt mean cnt mean cnt mean 
Ground 
Truth 

100 
0.0003 

100 
0.0030 

100 
0.0048 

100
0.0086

Evaluation of Different Algorithms 
8-Point 95 0.3361 67 0.7335 57 0.9643 32 1.0265
7-Point 85 0.2191 69 0.6678 55 0.8858 45 0.9150
6-Linear 81 0.3507 51 0.7330 44 0.8677 33 1.0573
6-Pizzaro 79 0.1871 57 0.7736 44 0.7868 32 1.0351
5-Nistér * 88 0.1346 77 0.6184 64 0.7910 54 0.9737
5-Stewénius  88 0.1346 77 0.6184 64 0.7910 54 0.9737
5-Li 88 0.1346 77 0.6184 64 0.7910 38 1.0040
5-Non-linear 40 0.4367 31 0.4205 37 0.3403 37 0.4715

Selection Strategy for Multiple Solutions 
Sampson S * 100 0.0364 100 0.2069 95 0.3381 87 0.5475
Cheirality C 38 0.6003 40 0.7801 25 0.8582 21 1.1246
C-5 + S * 100 0.0350 100 0.2140 99 0.3184 96 0.4879
C-all + S 100 0.0280 100 0.1619 96 0.2800 90 0.4413

Over-determined Solution 
8-Point 97 0.0433 96 0.2529 89 0.4730 69 0.6653
5-Nistér * 84 0.5310 70 0.6350 73 0.5765 76 0.7148

Data Conditioning 
8-Uncond 94 0.0429 95 0.2776 92 0.4581 73 0.6194
8-Cond 98 0.0460 95 0.2817 86 0.3988 73 0.6678
5-Uncond 100 0.0354 99 0.1724 98 0.3231 95 0.5198
5-Cond 100 0.0292 100 0.1621 100 0.3037 94 0.4303

Table 2:  Percentage of correct solutions and mean errors.  
(* indicates method in Figure 2) 

 
 

5. DISCUSSION OF THE SIMULATION RESULTS 

In general, all algorithms show one common effect: The 
estimation of camera rotation is much more stable and accurate, 
than the estimate of camera translation. To show the influence 

of noise, the camera pose is calculated from the object points 
and noisy image points via spatial resection and compared with 
the ground truth. Surprisingly, all direct 5-point solvers produce 
exactly the same results up to noise of σ  = 0.9. The methods 
(Nistér, 2004) and (Stewenius et al., 2006) produce exactly the 
same results in all tests. The supposable higher accuracy of the 
second algorithm can not be verified by evaluating the first five 
significant digits.  
The method of (Li & Hartley, 2006) has problems with large 
noise and can not reach the quality of the other two 5-point 
techniques at σ  = 1.3. Opposed to (Batra et al., 2007), the 
numerical instability of the eigen-decomposition is not limiting 
the five-point algorithm. Even worse, the non-linear 5-point 
technique suffers from finding the solution and a perfect 
starting value does not ensure convergence of the non-linear 
optimization technique. This can be seen by the low number of 
correct solutions, even for small amount of noise. Nevertheless, 
if a solution was found, it is highly accurate.  
Both 6-point algorithms produce results not as good as the 5-
point techniques, especially if noise increases. The method of 
(Pizzaro, 2003) is a bit more reliable, than the linear one of 
(Philip, 1998). The 7- and 8-point algorithms show a similar 
behavior. If noise increases to realistic amounts, the results 
become even worse than the 6-point algorithms. In general, the 
5-point algorithms outperform every other technique.  
The cheirality test alone is not sufficient to select a good 
solution, because many estimates of essential matrices have all 
points in front of both cameras. The Sampson distance of 
additional points is a better criterion, but with increasing noise 
it has a higher probability to select a wrong solution. 
Combining the two criterions can be done in two ways: First, 
the cheirality is tested only for the 5 points used for the 
computation. In this case for every set of solutions at least one 
has all points in front, but some solutions can be ignored. This 
makes the selection very robust and needs only moderate 
computation time. Second, the cheirality test can be performed 
over all available points. This lead to a bit more accurate 
results, but for larger noise the number of acceptable solutions 
decreases. In addition, the triangulation of all points is 
computationally intensive. The best trade off between 
robustness, accuracy and computational effort is to compare the 
Sampson distances of all points, which have the 5 points in 
front of both cameras.  
We also investigated weather the algorithms can improve the 
accuracy of the essential matrix, if more than the minimal 
number of points is used. Surprisingly, both over-determined 5- 
and 8-point algorithms decrease in accuracy.  
The comparison of results with and without data conditioning 
shows that an additional conditioning of the already normalized 
coordinates is not necessary for the computation of the essential 
matrix. The average values are so close to each other, that 
almost no influence can be measured.  
 
 

6. MULTIPLE-CAMERA POSE ESTIMATION 

As mentioned before, the main drawback of the 5-point 
algorithms are the 10 possible solutions. Selecting and detecting 
the right solution is not trivial, especially in the presence of 
noise. Since cheirality tests and epipolar distance filtering are 
instable, additional constraints must be imposed.  
The situation becomes easier, if two or more cameras move in a 
fixed relation to each other, e.g. if they are mounted on the 
same vehicle. Their motion is not independent of each other 
(see Figure 3). This fixed relationship can be used to select the 
right solution pair of the two solution sets. 



 

 

 
Figure 3: Constrained multiple-camera motion 

 
We denote a camera i at time j with  and assume that the 
reference camera  is located at origin. As shown in Figure 8, 
the projection matrices  and  have a fixed relative 
orientation defined by 2 . If the cameras move to the 
positions of  and , the essential matrices for both motions 

 and  are determined. Inspired by (Esquivel et al., 2007), 
the following constraint is imposed:  

j
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Each transformation can be separated into a translation vector C 
and a rotation matrix R. Therefore, a correct pair of solutions 
must also fulfill: 
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 (19)

Unfortunately, the essential matrix contains the translational 
component only up to scale and therefore, the ratio of the 
motion lengths  and  is unknown: 1

jC 2
jC

2 2 2
1 2 1 2 2μ λΔ + = Δ +ΔR C C R C C  (20)

To estimate the relative scale factors μ and λ, the linear 
equation system  

(2 2 2
1 2 2 2 1

μ
λ
⎛ ⎞⎡ ⎤−Δ = Δ − Δ⎜ ⎟⎣ ⎦ ⎝ ⎠

C R C C R C , (21)

of the form A x = b can be used to solve for the unknown in x. 
An extension for multiple cameras is straight forward: 
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(22)

The missing constraint between  and  requires one camera 
as reference at origin. Nevertheless, we recommend this extra 
coordinate transformation, because the third constraint 
improves significantly the estimation of the translation factors. 

2
2P 2

3P

The equation systems (21) and (22) are over-determined, since 
every camera introduces one unknown scale factor and each 
pair of cameras introduces three constraints. Therefore, the 
residual errors  

= −r Ax b  (23)

are used as quality measure for the pose estimation. We 
combined the conditions (19) and (21) into a cost function, 
which is computed for every possible pair of solutions.  

As the rotation is much more stable than the translation (see 
section 4 and 5), some weighting factors wtrans and wrot should 
be used to balance the cost function, e.g.  wtrans = 5wrot . 

j
i trans rot errore w w r= ⋅ + ⋅r  (24)

If temporally tracked points in the camera pairs ( , ) and 
( , ) are additionally matched between the cameras, the 
missing scale factors μ and λ can be computed according to the 
fixed camera pose 

1
1P 2

1P
1
2P 2

2P

2ΔT . The triangulation of object points X 
using the spatial pair ( 1P , ) defines a reference scale.  1

1
2P

Now the triangulated points X1 and X2 derived from the 
temporal pairs ( 1

1P , ) and ( , ) respectively can be scaled 
to the reference points X. The distance between the 3D-
coordinates and the projection centers gives the relation of the 
scale factors used in 2

2
1P 1

2P 2
2P

ΔT , T  and . In case of inappropriate 
motion the triangulation of temporally tracked points is less 
accurate than spatially matched points on the camera rig. 
Therefore, the average of the nearest five object points for each 
triangulation pair is used to compute the scale factors μ and λ:    

2
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2
2T

5 5

1
1 1

0.2 ,  0.2i
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μ λ
= =
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7. EXPERIMENTS WITH MULTIPLE CAMERAS 

The multiple-camera setup is tested on a real data sequence. 
The sequence consists of three independent camera streams, 
which are mounted on a calibrated rig. Every frame has at least 
100 tracked features. The essential matrices are computed with 
a RANSAC technique using the minimal 5-point solver. To 
ensure a certain motion of the cameras, frames with an average 
tracking disparity below 10 pixels are omitted.  
The camera paths are reconstructed fully automatically. To 
compare the robustness of the proposed multi-camera 
technique, paths of the single track of the reference camera and 
the linked track are shown in Figures 4 and 5. The path in 
Figure 4 suffers from a miscalculation in the middle of the 
track, which results in orthogonal camera placement. After this 
discontinuity the scale is wrong, because the scale factor is 
calculated on the last camera pair. In Figure 5 the path is 
smooth and correctly scaled. The gaps in the path indicate 
skipped images with insufficient camera motion.  
The whole multi-camera path consists of 900 frames. The 
reference position was manually set and the extracted path is 
shown as a red line in Figure 6. Please note, that the camera 
path has not been optimized by bundle adjustment or any 
further reference points. 
  
 
 

 
Figure 4: Reconstructed single-camera path over 110 frames 
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