Genetic Algorithm SAmple Consensus (GASAC) -A Parallel Strategy for Robust Parameter Estimation

Volker Rodehorst and Olaf Hellwich

Computer Vision & Remote Sensing Berlin University of Technology, Germany {vr, hellwich}@cs.tu-berlin.de

25 Years of RANSAC Workshop in conjunction with CVPR

New York, 18 June 2006

Introduction

- New general approach GASAC for robust parameter estimation
- Based on the combination of **RANSAC-like** parameter estimation with an **evolutionary optimization** technique
- Applied to problems in computer vision
- Estimation of geometric relations
- Applications:
 - Camera calibration
 - Narrow and wide-baseline stereo matching
 - Structure and motion estimation
 - Object recognition tasks

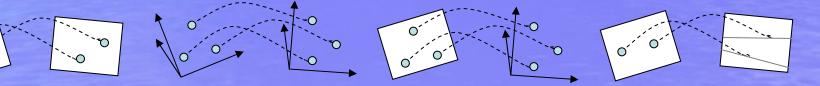
Challenge

- Automatically finding correspondences:
 - At the beginning of an image matching process only the correlation of local descriptors is available
 - Mismatches (outlier) cannot be avoided and must be removed

Assumptions:

- We have a data set with putative feature correspondences
- A subset is consistent with some geometric relation (model)

• Task:


- Search for subsets of matches consistent with the model (inlier)
- Estimate the transformation parameters

CVPR Workshop RANSAC 25

Projective Transformations

Transformations	Parameter <i>p</i>	Minimum Points <i>m</i>
2D-Homography ${f H}$	8	4
3D-Homography ${f H}$	15	5
Essential matrix ${f E}$	5	5
Projection matrix P	11	6
Trifocal tensor ${\cal T}$	18	6
Fundamental matrix ${f F}$	7	7

O´

Ó

CVPR Workshop RANSAC 25

Matches Consistent with Model

Tentative matches using local image descriptors (contain 42% outliers)

Robust estimated matches satisfying the epipolar constraint (F-Matrix)

Volker Rodehorst

CVPR Workshop RANSAC 25

Overview

- Related Work
- Robust Parameter Estimation
 - M-Estimators (Huber, Tukey)
 - Least Median of Squares
 - Monte-Carlo Method (RANSAC)
- Genetic Algorithm GASAC
 - Representation of the Gene Pool
 - Genetic Operators (Selection, Cross-over, Mutation)
 - Reproduction Plan
 - Adaptive Termination Criterion
- Experimental Results
 - Comparison of RANSAC with GASAC
- Conclusions and Outlook

RANSAC Related Work

- RANSAC (RANdom SAmple Consensus) by Fishler & Bolles, 1981
- Various Improvements
 - MLESAC (Maximum Likelihood Estimation SAC) by Torr & Zisserman, 2000
 - MAPSAC (Maximum A Posteriori SAC) by Torr, 2002
 - Preemptive RANSAC by Nistér, 2003
 - Guided-MLESAC by Tordoff & Murray, 2005
 - **PROSAC** (*PROgressive SAC*) by Chum & Matas, 2005
 - R-RANSAC (Randomized RANSAC) with SPRT (Sequential Probability Ratio Test) by Matas & Chum, 2005
 - Bail-out Test for RANSAC by Capel, 2005

CVPR Workshop RANSAC 25

GA Related Work

Evolutionary Strategy

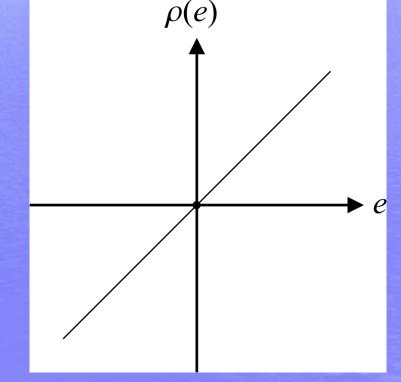
- Mutation selection strategy by Rechenberg, 1973
- GA (Genetic algorithm) by Holland, 1975
- GA for geometric relations by Saito and Mori, 1995
- Adaptation genetic operator by Chai and Ma, 1998
- sGA / mGA (Simple / Messy GA) by Hu et al., 2002/4

CVPR Workshop RANSAC 25

Influence Functions

• Over-determined homogeneous equation system $Ax = e, e \neq 0$

Error of the *i*-th observation: e_i


• Least-Squares-Method:

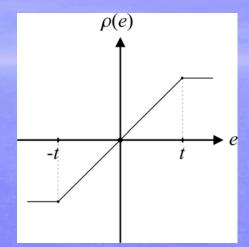
 $C = \sum_{i} e_i^2$

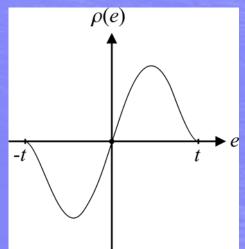
- **Problem:** The sum of squared errors e_i is a sensitive measure
- **Objective:** Find a suitable influence function

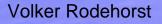
$$C = \sum_{i} \rho(e_i)$$

Volker Rodehorst

M(aximum-Likelihood)-Estimators


Min-Max-Function of Huber


the influence is limited to a **constant** value: $\rho(e) = \min(t, \max(e, -t))$


Function of Tukey

the influence **reduces** again after a certain value:

$$\rho(e) = \begin{cases} e(t^2 - e^2)^2, & |e| < t \\ 0, & \text{otherwise} \end{cases}$$

CVPR Workshop RANSAC 25

Automatic Threshold

• **Thresholds** of the χ^2 distribution (confidence 95%)

Dimension	Model	Threshold t	
1	Fundamental matrix ${f F}$ Essential matrix ${f E}$	1.96σ	
2	2D-Homography ${f H}$ Projection matrix ${f P}$	2.45σ	
3	3D-Homography ${f H}$ Trifocal tensor ${\cal T}$	2.79σ	

Robust Standard Deviation

$$\sigma = 1.4826 \cdot \left(1 + \frac{5}{n-p}\right) \cdot \operatorname{median}_{i} |e_{i}|$$

With *n* observations and parameter space dimension *p*

olker Rodehorst

CVPR Workshop RANSAC 25

Other Robust Methods

- Least-Median-of-Squares Method (LMedS)
 - $C = \text{median } e_i^2$

$$e_1^2 \le e_i^2 \le e_n^2$$
 for $i = \frac{n}{2}$

- Tolerates up to 50% outliers
- No threshold must be defined
- Monte-Carlo Method (RANSAC)

$$\rho(e) = \begin{cases} 1, & |e| < t \\ 0, & \text{otherwise} \end{cases}$$

Maximize the number of data, which is consistent to the minimal solution

Volker Rodehorst

CVPR Workshop RANSAC 25

Statistic Termination Criterion

- It is not feasible to test **all possible** combinations $\binom{n}{k} = \frac{n!}{k! (n-k)!}$ for *n* observations with *k* unknown parameters
- Fraction of outliers in the data set *S* with *n* elements:

 $\varepsilon = 1 - \frac{C}{n}$

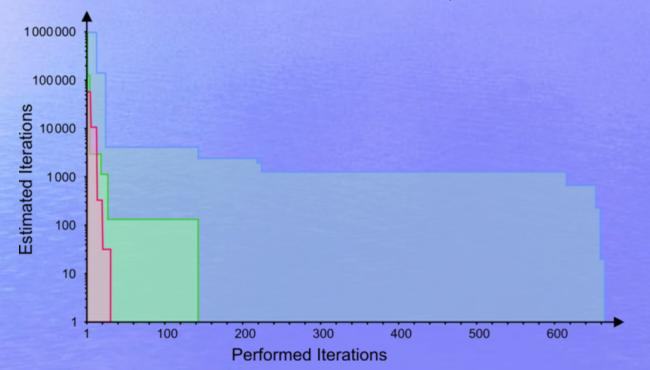
• **Confidence**, that at least **one minimal selection** with *m* elements out of *R* data sets contains **no outlier**:

$$p = 1 - \left(1 - \left(1 - \varepsilon\right)^m\right)^H$$

• Minimal number of the tries:

$$2 = \frac{\ln(1-p)}{\ln(1-(1-\varepsilon)^m)}$$

CVPR Workshop RANSAC 25


Termination Criterion Example

- Linear computation of the fundamental matrix (*m* = 8) using *n* = 25 image correspondences
- All possible attempts: $\binom{25}{8} = 1.081575$
- Tolerating 45% outliers ($\mathcal{E} = 0.45$)
- Confidence of an error-free selection 99% (p = 0.99)
- Estimated attempts R = 548

Adaptive Termination Criterion

• Idea: Update the number of required samples R each iteration using the actual fraction of outliers ε_i

• Problem: With strongly disturbed data the number is too small !

olker Rodehorst

CVPR Workshop RANSAC 25

Genetic Algorithm

- **Biologically motivated** approach for the solution of optimization problems
- Imitates the successful principles of the evolution
- Philosophy:
 - Parameters of a problem can be considered as a construction plan of an organism (chromosome)
 - Under the given environmental condition
 - Survivability (fitness)
 - Evolutionary changes

yield a better adapted generation

/olker Rodehorst

CVPR Workshop RANSAC 25

Gene Pool Representation

- Population G: Consists of several individuals
- Individual: Is characterized by a chromosome

$$\mathbf{g} = (g_1, \dots, g_m)$$

- **Chromosome**: Consist of *m* elements, which are called genes
- Gene: For *n* corresponding points $\mathbf{x}_i \leftrightarrow \mathbf{x}'_i$ the index *i* is used $g_k \in \{1, ..., n\}$ for k = 1, ..., m

which may occur only once within one chromosome

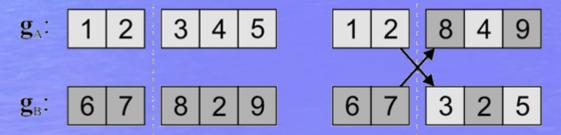
- Fitness: Ability to prevail within the gene pool
 - Geometrical error for all points using a robust cost function
 - A small value corresponds to a large fitness

CVPR Workshop RANSAC 25

Selection Operator

- Select parents for reproduction
- Roulette wheel:
 - Each individual get a sector on the wheel
 - The sector size in related to their fitness
 - The position is chosen randomly

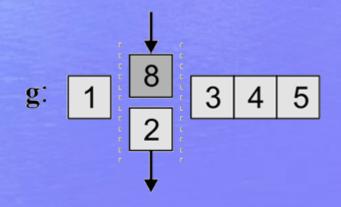
er Rodehorst


CVPR Workshop RANSAC 25

Crossover Operator

- Two chromosomes are cut apart and built up over cross again
- The execution of the operation and the section point are selected randomly
- Only those pairs of genes are considered, which ensure an **individual occurrence**
- The crossover probability P_C is 0.5

Parents


Children

CVPR Workshop RANSAC 25

Mutation Operator

- Prevent convergence in a suboptimal local minimum
- Randomly changing of genes supply new gene material
- It must also be ensured that no double genes result
- The mutation probability P_M of a gene is $\frac{1}{2m}$

CVPR Workshop RANSAC 25

Technical Modifications

Change Mechanisms

- The sequence of the genes is not important
- The length of the chromosomes remains constant
- Inverting & recombination operators are neglected
- Convergence Criterion
 - Removing double individuals from the gene pool accelerates the optimization process
 - A solution reached cannot worsen again, if the chromosome with best fitness stays unmodified in the gene pool

CVPR Workshop RANSAC 25

Reproduction Plan (Algorithm)

end

Prerequisites:

- a set S of *n* correspondences (*e.g. Matched image coordinates*)
- a function for model parameter estimation (e.g. F-Matrix, Trifokal-Tensor)

er Rodehorst

• a robust cost function C (e.g. Huber, Tukey, LMedS)

Apply crossover operator with probability P_C for child₁ and child₂ do Apply mutation operator with probability P_M Generate model hypothesis Evaluate model using robust Cend end Clone best individual in **G** unmodified Reduce **G** to the best N individuals end

for i=1 to R cycles do

for i=1 to N initial individuals do

Return model of that individual in G with best fitness C_{min}

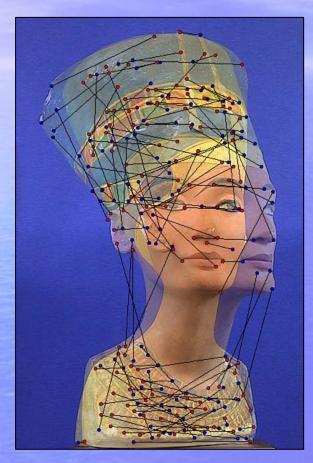
 G_i = Sample randomly a subset of *m* genes from *S* Generate model hypothesis from this minimal set

Select two parents from G in relation to their fitness

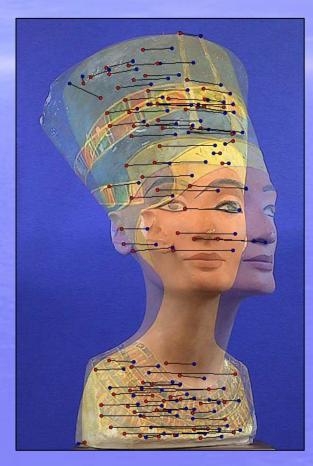
Evaluate consensus score using robust C

for j=1 to M/2 new individuals do

CVPR Workshop RANSAC 25


Comparison RANSAC/GASAC

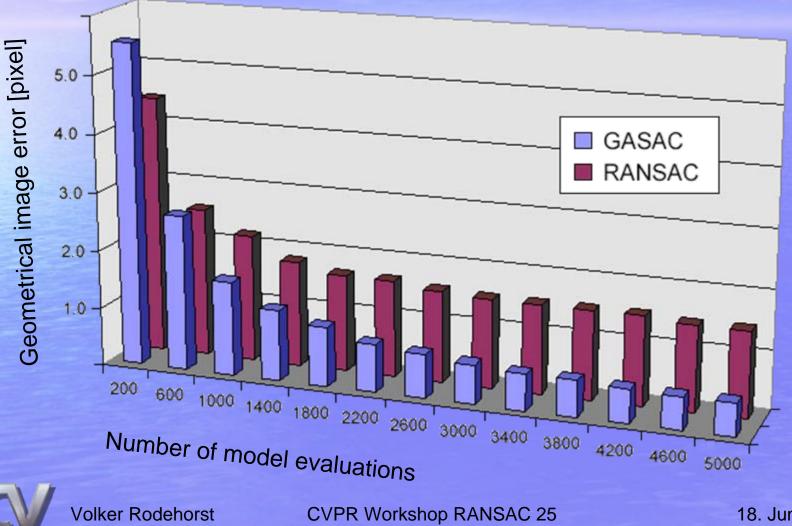
- 25 image pairs of the Nofretete bust were prepared with 50 strongly disturbed point correspondences
- Computation of the fundamental matrix with the 7-point-algorithm using LMedS minimization of the symmetrical epipolar distance
- Exactly **5000 model hypotheses** were evaluated (N = 200 and M = 400 in 12 cycles)
- All image pairs were evaluated 100 times


CVPR Workshop RANSAC 25

Bust of Nofretete

a.) Tentative matches using local image descriptors

olker Rodehorst



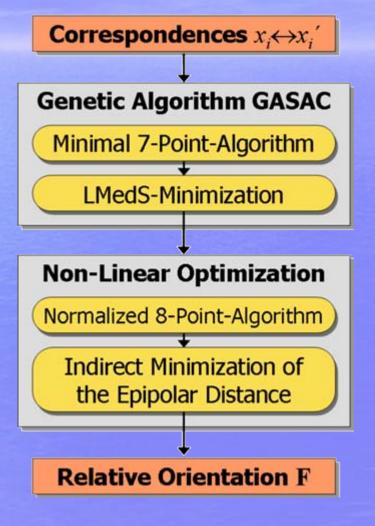
b.) Robust estimated matches satisfying the epipolar constraint

CVPR Workshop RANSAC 25

Geometrical Image Error

Number of Evaluations

• Evaluations for reaching the **optimal solution**:


Method	N M		Evaluations	
Theoretic			~ 100 Mio.	
RANSAC			57 233	
GASAC	50	100	7 052	
	100	200	4 465	
	100	400	4 147	
	100	800	5 186	
	200	400	5 633	

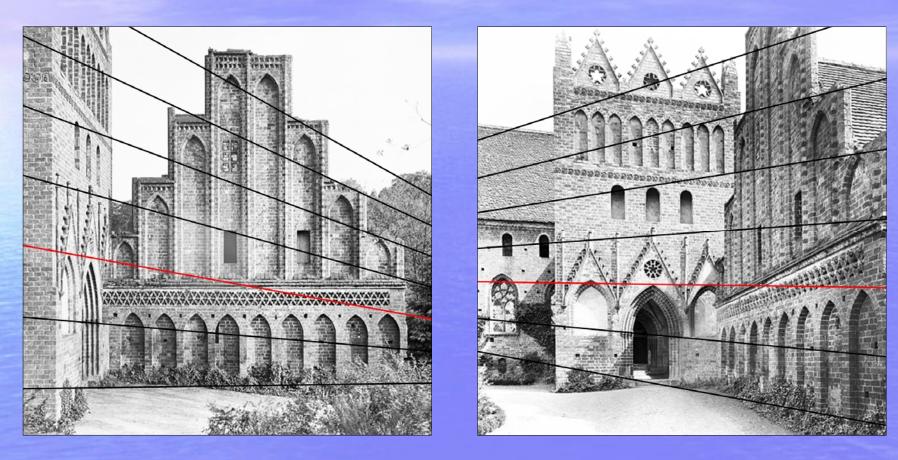
• The user defined sizes of the **initial population** N and the **next generation** M are not the crucial factor

/olker Rodehorst

CVPR Workshop RANSAC 25

Robust Orientation Procedure

CVPR Workshop RANSAC 25

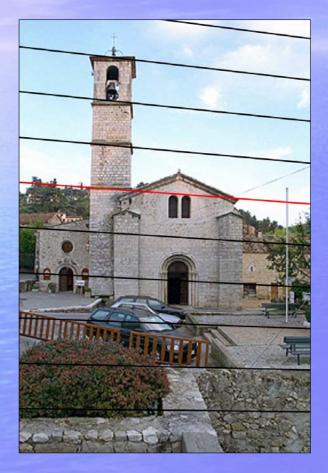

Computation of the F-Matrix

Method	N	Geometrical Error [pixel]		$\Delta \mathbf{F}$		CPU [sec.]	
		Mean	Max	Mean	Мах		
Normalized 8-point-algorithm							
Linear	350	2.152	19.770	0.219	1.249	0.01	
Non-linear	350	2.131	19.185	0.219	1.249	115.39	
Robust estimation with GASAC (Minimal 7-point-algorithm)							
Tukey	253	0.568	6.059	0.215	1.247	5.04	
Huber	236	0.535	4.980	0.215	1.246	4.95	
LMedS	231	0.493	4.820	0.211	1.245	4.53	
Non-linear	231	0.474	4.599	0.210	1.245	31.38	

Volker Rodehorst

CVPR Workshop RANSAC 25

Monastery in Chorin

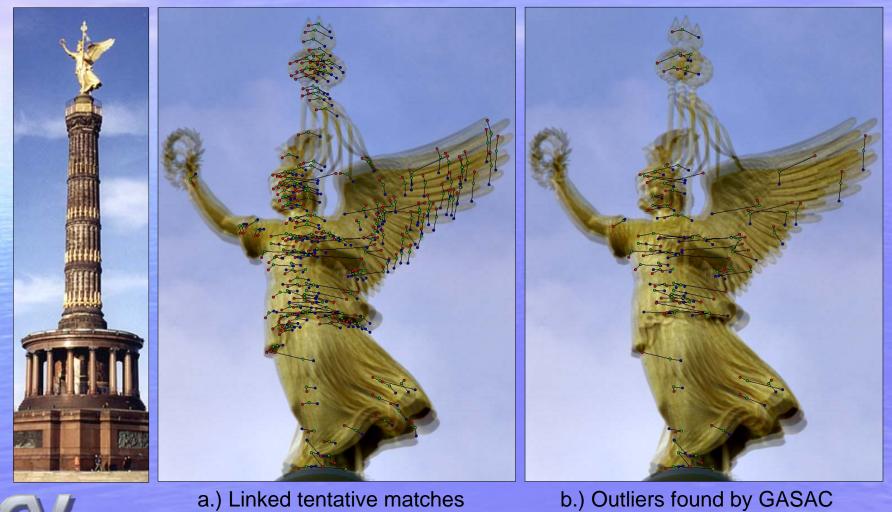


Computed epipolar geometry for a wide-baseline stereo image

Volker Rodehorst

CVPR Workshop RANSAC 25

Church in Valbonne, France



Automatically estimated epipolar geometry for a rotated image pair (INRIA)

Volker Rodehorst

CVPR Workshop RANSAC 25

Robust Trifocal Geometry 1/2

olker Rodehorst CVPR Workshop RANSAC 25

Robust Trifocal Geometry 2/2

c.) Consistent to trifocal geometry olker Rodehorst CVPR Workshop RANSAC 25 d.) Guided matching 18. June 2006

Conclusions and Outlook

• GASAC:

- New robust estimator based on an evolutionary optimization technique
- Best results in combination with the stable LMedS

General methodology:

- Could be used for any problem in which relations can be determined from a minimum number of points
- Without the use of prior information

Significant acceleration:

- Can be achieved when random trials are replaced by a systematic strategy
- Parallel Evaluation:
 - Several evaluated solutions exists simultaneously
 - The combination of the best parameters generates better solutions

• Future work:

 Replace the optimistic termination criterion with a more realistic one (e.g. based on Capel or Matas & Chum)