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Abstract

Only few problems in computer vision have been
investigated more vigorously than stereo. Nevertheless,
the main obstacle on the way to their practical
application is the excessively long computation time
needed to match stereo images. This paper presents
parallel algorithms for edge-based stereo suitable for
depth computation. Edge-based stereo techniques
produce only sparse depth maps. Thus, we present in
addition an efficient parallel algorithm for dense stereo
matching that can be employed in scene reconstruction.
Both approaches are implemented on several different
computers to measure the performance. We compared
single processor and multiple processor implementations
to evaluate the profit of parallel realizations. Results are
presented in this paper. We show that both approaches
are very suitable for parallel implementations and that
computing time can be considerably reduced with
parallel implementations. Furthermore, we present the
results that are obtained when employing the different
approaches to stereo images.

1 Introduction

Stereo is a well-known technique for obtaining
depth information from digital images. The key problem
in stereo is how to find the corresponding points in the
left and in the right image, referred to as the
correspondence problem. Whenever the corresponding
points are determined, the depth can be computed by
triangulation. Excessively long computation time needed
to match stereo images is still the main obstacle on the
way to the practical application of stereo vision
techniques. Computational fast stereo techniques are

required for real-time applications, especially for mobile
robots and autonomous vehicles. General purpose
computers are not fast enough to meet real-time
requirements because of the algorithmic complexity of
stereo vision techniques. Consequently, the use of
parallel algorithms and/or special hardware is inevitable
to reach real-time execution.

Stereo techniques can be distinguished by either
matching edges and producing sparse depth maps or
matching all pixels in the images and producing dense
depth maps. The objective of the application always
effects the decision whether the preference is given to
dense stereo correspondence or to edge-based
correspondence. For a successful reconstruction of
complex surfaces it is essential to compute dense
disparity maps defined for every pixel in the entire
image.

Unfortunately, most of the existing dense stereo
techniques are very time consuming (see e.g. [1, 2]). In
an earlier investigation [3], we found the Block
Matching technique using color information to be very
suitable for dense stereo. The precision of the matching
results always improved by 20 to 25 % when using color
information instead of gray value information. Thus,
high quality matching results can be easily obtained with
this technique. In this paper, we present parallel
algorithms for obtaining dense depth maps from color
stereo images employing this approach. We believe that
robotics applications do not neglect dense depth
information if this information can be obtained quickly.
Nevertheless, dense depth maps are not always required
for every application. Therefore, we present in addition a
parallel algorithm for edge-based stereo correspondence.
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Figure 1: Illustration of the parallel Block Matching
algorithm showing by example the computation of the
MSE in the segment number 7 (shadowed area) in three
color components in both color images.

2 Chromatic Block Matching for Dense
Stereo Correspondence

During the past couple of years some hardware
stereo implementations were already presented. Neural
networks and transputers are, for example, successfully
employed for stereo [4, 5] and a parallel stereo algorithm
implemented on the TMC Connection Machine was
presented [6]. None of these implementations produces
dense depth maps. As mentioned before, we found the
Block Matching technique using color information to be
very suitable for dense stereo matching [3]. The main
idea of Block Matching is a similarity check between
two equal sized blocks (n x m-matrices) in the left and
the right image (area-based stereo). The mean square
error MSE  between the pixel values inside the respective
blocks defines a measure for the similarity of two blocks.
MSE is defined for gray value images as:

MSE(∆ ) = 1
m ⋅ n

IL (i, j) − IR (i + ∆ , j)
2

,
j=1

m

∑
i=1

n

∑ (1)

where IL and IR are the intensity functions of the left and
right image and ∆ is an offset describing the difference
( xL -  xR ) between the column positions in the left and in
the right image. This formula can be easily extended to
color images, when employing a color measure. We
found [3] that the selection of the color measure has no
significant influence on the quality of the matching
results. Therefore, we propose to employ an
approximation of the Euclidean distance denoted as Dc.
For two colors f1 = (R1,G1,B1) and f 2 = (R2 ,G2,B2) in
the RGB color solid the measure Dc is defined as:

Dc ( f1, f 2 ) = R1(i, j) − R2 (i, j)
2 +

G1(i, j) − G2 (i, j)
2 +

B1(i, j) − B2 (i, j)
2

 
.

(2)

The left color image FL and the right image FR may be
represented in the RGB color space as FL(i,j) = (RL(i,j),
GL(i,j), BL(i,j)) and F R(i,j) = (RR(i,j), GR(i,j), BR(i,j)).
Now (1) changes to

MSEcolor (∆ ) = 1
m ⋅ n

Dc (FL (i, j), FR (i + ∆ , j))
j=1

m

∑
i=1

n

∑ .(3)

The block (of size n x m) is shifted pixel by pixel inside
the search area. The disparity D between the blocks in
both images is defined by the distance between the
positions (the difference in the columns) of the blocks,
showing the minimum mean square error in both images.
Furthermore, the search area in the right image is limited

in the horizontal direction by a predefined maximum
disparity dmax :

D = min
∆ ≤dmax

MSEcolor (∆ ){ } . (4)

Block disparities are median filtered to avoid outliers.
An explicit disparity value is computed for every pixel
by extending a pixel selection method [7] to color
images. A dense disparity map is generated when
applying this pixel selection technique to every pixel in
the image. Afterwards, median filtering is applied to
pixel disparities. For further details see [3].

3 Parallel Algorithms for Chromatic Block
Matching

Several ways exist to develop parallel algorithms
for chromatic Block Matching. The first variant we
implemented was to use three processing units for
computing MSE  functions separately in every color
channel. Once the MSEs are obtained, the results are
combined to find a criterion for Block Matching.
Unfortunately, no decrease in computing time occurred
since the overhead for dividing the processes and for
combining the results again was too large. This is due to
our available hardware and software configuration and
does not hold in principle. We intend to find a more
suitable configuration to continue with this idea.

Currently, we divide both images into several
segments and we compute MSEs for every segment in
parallel. For example, both color images can be divided
into 8 segments. Now, MSEs can be computed in parallel
for every segment using 8 processing units (PUs). An
illustration of this procedure is given in Fig. 1. In
principle, both images can be divided into many
segments (e.g., 70 segments for PAL resolution).
Utilizing an individual processing unit for every segment
will speed up the matching process.



BEGIN
{ Transform the left and right image i
   from RGB to I1I2I3 color space }

PARALLEL DO  (in PUi  , 1 ≤ i ≤ 2)
ConvertRGBtoI1I2I3i ()

END PARALLEL

{ Search for corresponding blocks in
   horizontal segments by minimizing the MSE }
PARALLEL DO (in PUs , 1 ≤ s ≤ 70)

FOR d = 2 TO dmax DO
BlockMatchings (d)

END FOR
END PARALLEL

{ Filter the block disparity image with a
   median approximation in horizontal and
   vertical segments }
PARALLEL DO (in PUs , 1 ≤ s ≤ 70)

BlockMedians ()
END PARALLEL

{ Compute pixel disparities from block
   correspondences }
PARALLEL DO  (in PUs , 1 ≤ s ≤ 70)

SelectPixels ()
END PARALLEL

{ Apply the median approximation to the
   pixel of the disparity image in horizontal and
   vertical segments }
PARALLEL DO (in PUs , 1 ≤ s ≤ 70)

PixelMedians ()
END PARALLEL

END

Figure 2: Parallel Algorithm of Chromatic Block Matching
(with up to 70 processing units PUs).

In an earlier investigation [3], we found a slight
improvement in the quality of the matching results when
employing the I1I2I3 color space suggested in [8] instead
of the RGB  color space. The three coordinates are
defined by

I1 = R + G + B

3
, I2 = R − B

2
, and I3 = 2G − R − B

4
.

Image data have to be transformed from RGB to I1I2I3
when this color space is used. Nevertheless, the principle
of dividing a color image into several segments holds for
every tristimulus color solid.

A variant of the median filter, the separable "median
of medians“  [9], was implemented to accelerate image
smoothing. A one-dimensional median is first
determined in each row and afterwards in each column
for all rows and columns inside a two-dimensional

(2n+1)x(2n+1) mask. The final result is the median of
these 2 (2n +1) median values. Although the output is
not identical to the output of the two-dimensional filter,
the quality is very close to it and the algorithm is easier
to implement in real-time hardware. Furthermore, we
implemented pixel selection for every segment in
parallel. The resulting parallel algorithm for chromatic
Block Matching is outlined in Fig. 2.

4 A Parallel Algorithm for Edge-Based
Stereo Correspondence

Dense depth maps are not always required for every
application, and their computation is time consuming.
Often, the computation of distances between the camera
system and the objects in the scene is the exclusive goal
of the stereo task. Thus, the correspondence search in
stereo images can be reduced to the matching of the most
prominent parts in the images. These are the edges.
Edge-based stereo techniques have the advantage of
being less sensitive to photometric variations. In an
earlier investigation [10], we found that high quality
edge matching results are obtained when a feature-based
technique suggested by Shirai and Nishimoto [11] is
applied to the stereo images. The main idea of this
binocular approach is based on disparity histograms
showing the distribution of disparity values in the
neighborhood of matching candidates in multiple
resolutions. A standard stereo geometry is used to reduce
the search space to horizontal lines.

Edges are extracted in both (intensity) stereo images
applying the Marr-Hildreth or LoG operator [12],
respectively, in three resolutions (σ1  = 1.41, σ2 = 3.18,
and σ3 = 6.01). Zero-crossings (ZCs) in the LoG filtered
images constitute the features in the succeeding
matching process. We do not concentrate on the parallel
implementation of the Marr-Hildreth operator since
Tremblay, Savard, and Poussart [13] presented a
hardware implementation. The so-called Multiport
Access photo-Receptor (MAR) is a CMOS sensor and
represents the sensory part of their integrated image
acquisition system. The whole system implements the
Marr-Hildreth edge detection scheme in 16 resolutions
using VLSI architecture. Linear edge segments extracted
from the image are transferred to the host computer.
Currently, a 256 x 256 pixel version is realized but a 500
x 500 pixel version is announced. In this paper, we
implemented edge detection in parallel for the three
resolution channels.

Now, the basic idea of the edge-based stereo
approach will be explained (cp. [11]). A ZC may be
defined as two-dimensional unit vector e(i,j) along the
ZC line. A pair of ZCs in the right and left images is



regarded as matching candidate, if the difference
between the directions of ZCs is less than 30 degrees.
This can be represented by the following matching
functions MR and ML for the right and left image,
respectively: if eR(i,j) and eL(i+d,j) are a matching pair,
MR(i,j; d ) = 1 and ML(i+d,j; d) = 1. Otherwise, MR(i,j;
d) = 0 and ML(i+d,j; d ) = 0, where d denotes a disparity.

First, the global disparity histogram (GDH ) is
determined to find approximate disparity intervals. The
GDH  represents the distribution of candidate disparities
(including true and false matches) in the entire image. It
is defined for the right image as:

GDH (R) (d) =

M(R) (i, j; d)
(i, j )∈A
∑

e(R) (i, j)
(i, j )∈A
∑

, (5)

where A is the whole image plane. GDH (R) alone is
sufficient to estimate the disparity distribution.
Computing the GDH  can be easily implemented in
parallel (see Fig. 3).

  BEGIN
{Compute global disparity histogram for each
channel  sv 

with σ1  = 1.41, σ2  = 3.18, σ3  = 6.01}
PARALLEL DO  (1 ≤  v ≤ 3)

PARALLEL DO  (in PUvw , 1≤ w ≤ 8)

FOR k  =  (number of rows/8)*(w-1)
TO (number of rows /8)*w   DO

FOR l =  1TO number of columns DO
Compute GDHvw

(R) (d)
END FOR  ( l)

END FOR  (k)
END PARALLEL
Initialize GDHv

(R)

FOR k = 0 TO  number of columns  - 1 DO
FOR j = 1 TO 8 DO

GDHv (R) (k) ← GDHv (R) (k) +
GDHvj

(R) (k)
END FOR ( j)

END FOR  (k)

END PARALLEL
  END

Figure 3: Parallel algorithm for the computation of global
disparity histograms (with 24 processing units PUvw,
1 ≤ v ≤ 3, 1 ≤  w ≤ 8).

Based on the GDH, a candidate disparity interval Iα
is determined in the following equation.

Iα = d | GDH (R) (d) > a H{ } ,

where H  is the peak value of GDH (R) (d) and a is a
constant value with 0 < a < 1. Local disparity candidates
are estimated using local disparity histograms (LDH ).
The LDH  shows the disparity distribution of true and
false matches within the window Wσ of size Nσ x N σ
around a ZC point, where Nσ = 2πσ . The LDH  for
a ZC at (i,j) in the image with d ∈  Iα  is defined as:

LDH( X ) (d; i, j) =

M( X ) (i, j; d)
(i, j )∈W

∑

e( X ) (i, j)
(i, j )∈W

∑
. (6)

LDHs are determined for the left and the right image
( X = L and X =  R ). The parallel computation of LDHs
can be easily realized employing the following algorithm
outlined in Fig. 4.

  BEGIN
{Compute local disparity histogram for each
channel σv with σ1 = 1.41, σ2 = 3.18,
σ3 = 6.01 and d ∈  Iα}
PARALLEL DO  (1 ≤  v ≤ 3)

PARALLEL DO  (in PUvw , 1 ≤ w ≤ 8)
FOR k  = (number of rows/8)*(w-1)
TO (number of rows /8)*w   DO

FOR l =  1 TO number of columns  DO
Compute LDH (L)  (d;k,l)
Compute LDH (R) (d;k,l)

END FOR  ( l)
END FOR  (k)

END PARALLEL
END PARALLEL

  END

Figure 4: Parallel algorithm for the computation of local
disparity histograms (with 24 processing units PUvw,
1 ≤ v ≤ 3, 1 ≤  w ≤ 8).

Once LDHs  of all channels are computed, a best
channel is selected for every window based on the first
and second largest peaks in LDH . If the difference
between the two peaks is the largest, the channel is
selected. A function F is defined to check the reliability
of the selected channel. F(X ) ( dX;  i, j  ) is the difference
between the largest peaks  of the best channel in the
window around (i,j) in image X (X = L oder X = R). dx is
the disparity showing the largest peak. Matching is
established if the values of the F functions are large and
the difference between the disparity values in the right
and left images is small.

Once the most probable disparity d*  is obtained in
Wσ, disparities of all ZC points in Wσ and those of finer
channels in W σ´ (σ´< σ) are obtained by searching for



the optimum disparity dk  being the closest to d*  (for
further details see [11]). Whenever a pair of ZCs is
matched, they are removed from ZC sets to reduce the
number of remaining candidates. After trying to establish
matches for all ZCs inside the window W σ and the
windows of finer resolutions, the algorithm (starting with
GDHs) is applied to the reduced feature lists. The
matching process terminates, if no new matches can be
established.

In our parallel implementation, we detect edges in
the left and in the right image in three resolutions in
parallel. Afterwards, the GDH , the candidate disparity
intervals, and the LDHs  are determined in parallel for
the three resolutions. The resulting parallel algorithm is
outlined in Fig. 5.

BEGIN
{ Search  for zerocrossings in the left
  and right image i for each channel c
  with σ1  = 1.41, σ2  = 3.18, σ3  = 6.01 }
PARALLEL DO (in PUic, 1 ≤ i ≤  2, 1 ≤ c ≤ 3)

FeatureExtractionic ()
END PARALLEL

DO
{ Compute global disparity histogram
   and candidate disparity  interval for
   all channels independent }
PARALLEL DO  (in PUc, 1 ≤ c ≤ 3)

ComputeGDHc ()
ComputeCDIc ()

END PARALLEL

FOR (Each feature in channel 0)  DO
{ For each channel c calculate the local
   disparity histogram and determine the
   existence and magnitude of a peak }
PARALLEL DO (in PUc, 1 ≤ c ≤ 3)

ComputeLDHc ()
ComputeFXYc ();

END PARALLEL

{ Try to match the features in c and all
   channels with finer resolution}
c ← SelectBestChannel ();
IF  (TestReliabilty (c) = OK) THEN

MatchAndDeletePair (c);
END IF

END FOR
WHILE (New features were matched)

END

Figure 5: Parallel algorithm of the edge-based stereo
approach using disparity histograms.

5 Experimental Results with Different
Hardware Configurations

We implemented the algorithms on the following
machines: a Sun SPARC 10-40 (in the following denoted
in brief as SPA10) using GNU C, a Sun SPARC 20-612
(denoted as SPA20) also using GNU C, a SGI Indigo
(denoted as IND) with a R4400 processor (150 MHz)
using IRIX C, and a SGI Power Challenge (denoted as
POWER) with twelve R8000 processors (75 MHz) using
IRIX Power C. We should like to emphasize that
different compilers are used on the different machines.
Therefore, we do not present a comparison between
different computers. Opposed to this, we exclusively
intend to illustrate the profit of parallel implementations.
By way of example, we present some results obtained on
different machines when using our different
implementations.

Both approaches were applied to several images of
different sizes. Due to lack of space, in this paper we
present performances for two images. One image called
BEETHOVEN represents a bust of Beethoven, a book,
and a phone (see Fig. 6 and Fig. 7 in the appendix). The
image has PAL resolution (752 x 566 pixel). A continuos
acceleration occurred up to a factor of 8 when applying
the chromatic Block Matching using 10 PUs (see Tab.
1). These results encourage an implementation on a
highly parallel architecture. Opposed to this, the
computing time consumed by the edge-based approach
could only be reduced by a maximum factor of 3 when
utilizing 6 PUs. Since our compiler does not support
hierarchical parallelism, we did not obtain an increase in
the performance by adding further PUs (see Tab. 3).

The computational cost of both approaches does not
depend linearly on the image size. Thus, in addition we
applied both approaches to an image of size 256 x 256
pixel. The image called PYRA represents a pyramid and
a coffee cup. Results are shown in Tab. 2 and Tab. 4.

Due to lack of space only the matching and the
reconstruction results for the BEETHOVEN image are
presented in the appendix.



Computing time  [in sec] SPA10 SPA20 IND POWER
1 PU

POWER
3 PUs

POWER
6 PUs

POWER
10 PUs

Conversion RGB to I1I2I3 left 0.75 0.53 0.41 0.17 0.17 0.17 0.17
right 0.75 0.53 0.40 0.17 0.17 0.17 0.17

Estimating Block Disparities 104.25 70.20 54.37 26.32 9.16 4.77 3.05
Block Median 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Pixel Selection 9.86 6.65 5.14 4.28 1.51 0.81 0.51
Pixel Median 0.92 0.42 0.26 0.36 0.13 0.08 0.07
Total 116.61 78.86 60.59 31.30 11.16 6.01 3.98

Table 1: Chromatic Block Matching applied to the image BEETHOVEN (752 x 566 pixels).

Computing time  [in sec] SPA10 SPA20 IND POWER
1 PU

POWER
3 PUs

POWER
6 PUs

POWER
10 PUs

Conversion RGB to I1I2I3 left 0.12 0.08 0.06 0.02 0.02 0.02 0.02
right 0.12 0.08 0.06 0.02 0.02 0.02 0.02

Estimating Block Disparities 10.87 6.85 5.65 2.45 0.89 0.50 0.35
Block Median 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pixel Selection 1.63 1.05 0.79 0.63 0.23 0.13 0.08
Pixel Median 0.10 0.06 0.03 0.06 0.02 0.01 0.01
Total 12.85 8.12 6.59 3.18 1.18 0.68 0.48

Table 2: Chromatic Block Matching applied to the image PYRA (256 x 256 pixels).

Computing time  [in sec] SPA10 SPA20 IND POWER
1 PU

POWER
3 PUs

POWER
6 PUs

POWER
10 PUs

Feature extraction left channel 0 25.48 16.79 5.94 2.95 3.17 3.24 3.30
channel 1 67.81 44.31 15.35 5.78 6.03 6.14 6.21
channel 2 210.16 136.78 61.49 16.23 16.52 16.69 16.71

right channel 0 25.34 16.47 5.85 2.92 2.94 3.32 3.29
channel 1 67.63 44.52 15.74 5.80 5.82 6.10 6.19
channel 2 207.99 136.92 62.35 16.24 16.37 16.73 16.80
Subtotal 604.41 395.79 166.72 49.96 22.53 16.78 16.97

Edge Matching 183.13 115.58 74.90 62.40 31.29 32.28 33.67
Total 787.54 511.37 241.62 112.36 53.82 49.06 50.64

Table 3: Edge-based stereo applied to the image BEETHOVEN (752 x 566 pixels).

Computing time  [in sec] SPA10 SPA20 IND POWER
1 PU

POWER
3 PUs

POWER
6 PUs

POWER
10 PUs

Feature extraction left channel 0 3.70 3.02 1.29 0.42 0.47 0.49 0.52
channel 1 10.65 8.63 4.92 0.88 0.93 0.96 0.96
channel 2 34.41 27.50 19.94 2.55 2.61 2.64 2.65

right channel 0 3.68 2.98 1.28 0.44 0.43 0.48 0.51
channel 1 10.76 8.60 4.91 0.89 0.92 0.95 0.97
channel 2 34.42 27.45 19.92 2.56 2.60 2.63 2.6
Subtotal 97.63 78.19 52.26 7.77 3.56 2.66 2.73

Edge Matching 4.34 3.47 0.54 0.82 0.58 0.63 0.65
Total 101.97 81.66 52.80 8.59 4.14 3.29 3.38

Table 4: Edge-based stereo applied to the image PYRA (256 x 256 pixels).

6 Conclusion

Several approaches for parallel stereo matching
have been presented. It has been shown that chromatic
Block Matching can be implemented very efficiently in
parallel. The results obtained so far encourage an
implementation on a highly parallel architecture.
Although we analyze color information for stereo

matching due to quality requirements, we achieve high
speed execution. Furthermore, we presented parallel
implementations of the edge-based approach. Their
performance is rather acceptable when using a non-
hierarchical implementation. Nevertheless, a more
efficient realization is expected by implementing our
hierarchical parallel algorithm. Additional tests and
investigations are necessary to improve the results and to



decrease computing time. Currently, this is under
investigation and further results will be presented soon.

In summary, we should like to emphasize that
computing time is considerably reduced if our parallel
algorithms are implemented on multi-processor
machines. Therefore, we believe that precise results can
be efficiently obtained in dense stereo matching and in
edge-based stereo matching when one of the presented
parallel algorithm is utilized.
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Appendix

Figure 6: Gray value print of the original left color stereo
image BEETHOVEN (752 x 566 pixel in PAL resolution).

Figure 7: Gray value print of the original right color stereo
image BEETHOVEN (752 x 566 pixel in PAL resolution).



Figure 8: Intensity encoded representation of the depth
map obtained with the edge-based approach.

Figure 9: Intensity encoded dense depth map obtained
with chromatic Block Matching.

Figure 10: Gray value print of the reconstructed
BEETHOVEN scene using the dense depth map shown in
Fig. 9.

Figure 11: A different view of the reconstructed
BEETHOVEN scene using the dense depth map shown in
Fig. 9.


