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Abstract. A very interesting approach to the integration of several fea-
tures into the process of analyzing shape may be based on [1, Theorem 2,
Section 3.5] by Aloimonos and Shulman . In this study, the implementa-
tion of this approach was tested by comparing the results of three
different algorithms. For applying this approach, several specific model
assump-tions and situations in scene space have to be carefully conside-
red. A dependence could be proved of the accuracy of shape results from
the direction to the point light source, and from the complexity of the
realized motion in 3-D space.

1     Introduction

Recent work in Computer Vision is emphasizing the importance of integrative ap-
proaches. The approach considered in this paper is one example for that direction of
research. On the other hand, it seems unrealistic that complex Computer Vision tasks
may be solved in a kind of an "one-step integrative solution". On that way, several
features or intrinsic characteristics have to be computed which will contribute to the
solution at some next levels of the solution process. So, also some type of modulari-
zation should be assumed. For combining several (integrative) steps, in [3] the speci-
fication of defined approaches by derivational units was proposed. Derivational units
consist of a certain combining theorem, a brief description of the application of the
theorem by a rule of qualitative reasoning, and a proposal how this desired appli-
cation may be implemented following a certain derivational algorithm. The notion
derivational algorithm was used because certain specifications about shape will be
derived by this algorithm from specific assumptions and features. By a certain com-
bining theorem it is not yet defined how this result can be used in practice. This
obvious situation should be taken in mind for the fair evaluation of a certain
combining theorem.

In this short note, the difficulties on the way of precise presentations of derivatio-
nal units are demonstrated by the discussion of one integrative approach to shape
analysis. Experiences with three different algorithms  and implementations will be
reported. For world coordinates (X,Y,Z), the shape is defined by the surface normals
n(X,Y,Z) = (p, q, ±1) resp. the surface gradients (p, q) of visible surface points
(X,Y,Z) of scene objects. The visible surface may be identified with a (unique) func-
tion Z(X,Y).  For the gradient  resp. shape it holds that

p  =  
∂Z
∂X

      and   q  =  
∂Z
∂Y

    .

At first, the used model for scene space and mapping of the scene space into the pic-
torial plane is briefely introduced. The pictorial xy-plane is parallel to the XY-plane,
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and the Z-axis is identical with the optical axis of the camera. A single point light
source is assumed, and s = (s1,s2,s3) denotes the direction to this point light source
(In practical applications, using e.g. neon tubes, this may be the direction to the clo-
sest point of the light source.). It is assumed that this directional vector s is constant
for the scene objects under consideration. Also, assume that the length of s is norma-
lized by   | s |  = 1 . In the case of parallel projection, the projection equations are gi-
ven by

x  = X     and    y  =  Y .

In the scene space, planar surface patches of opaque rigid bodies  are considered. A
surface patch may be assumed in the plane  Z = pX + qY + d.  It is assumed that the
surface normals n(X,Y,Z) are always pointing toward the pictorial plane. In the expe-
riments with moving bodies in the scene, the motion is described by a 3-D rotation
with rotational speed (ω1,ω2,ω3), and a 3-D translation (t1,t2,t3) .

If parallel projection is assumed, then by Kanatani  [2, Section 7.5] it was proved
that the local displacement u, v between two consecutive images is given by

x•  = u(x,y) = t1 + pω2x + (qω2 - ω3)y    and

y•  = v(x,y) = t2 + (-pω1 + ω3)x - qω1y .

Let  ux, uy, vx, vy  be the following displacement differences (this is not a gradient
approximation) in case that the Z-axis is pointing to the pictorial plane (case neg),

ux  = u(x+1,y) - u(x,y), vx  = v(x+1,y) - v(x,y),

uy = u(x,y+1) - u(x,y), vy  = v(x,y+1) - v(x,y).

In contrast, in the case that the Z-axis is pointing into scene space (case pos), the dis-
placement differences are defined by

ux  = u(x+1,y) - u(x,y), vx  = v(x+1,y) - v(x,y),

uy = u(x,y-1) - u(x,y), vy  = v(x,y-1) - v(x,y),

ensuring the "same orientation of the differences with respect to the Z-axis". By u-

sing the displacement differences for the case pos, from the both equations for x• 

= u(x,y)  and y•  = v(x,y)   it follows that the shape parameters may be uniquely
calculated by

 p(x,y) =  
ω3 - vx(x,y)

ω1
   =  

ux(x,y)

ω2
     and   q(x,y) =  

uy(x,y) + ω3

ω2
   =  

- vy(x,y)

ω1
   .

This result coincides (in principle) with the first two expressions of  [1, Theorem
3.b), but in the second expression a negative sign was obtained. Thus, for known ro-
tational speed of the surface patch, the gradient resp. shape may be computed if the
local displacement was correctly calculated before. In the following we assume that
the rotational speed of surfaces in the scene is unknown, and we also assume that
there is some algorithm available for computing the local displacement values quite
correctly.

2     Shape from shading, displacement, lighting direction

The approach to the integration of several features into the process of analyzing
shape given by  [1, Theorem 2, Section 3.5], is as follows. For two intensity images
f1 and f2 from a series of images, the direction s = (s1,s2,s3) to the point light source,
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the local displacement u(x,y) and v(x,y), and from the ratio

r(x,y)  =   
f2(x + u(x,y), y + v(x,y))

f1(x,y)    ,  for  f1(x,y) _ 0,

of intensity values of "moving image points", a constraint for shape (p,q) was deri-
ved. As model assumptions, rigid bodies in the scene , parallel projection

 x = X  and y = Y  with  n(X,Y,Z) = n(x,y) ,

a point light source with constant direction, and Lambert reflection

f(x,y) = ρ • n(x,y) • s

with constant albedo ρ  are used.
Unfortunately, this theorem is erroneous printed, e.g. even in the case of two

identical intensity images f1 and f2, i.e. no local displacement at all, from the printed
theorem still a constraint could follow. But, the given proof is correct up to the non-
published final computation of the algebraic constraint. And, it is worth to note that
the assumed orientation of the Z-axis in the projection model has essential influence
on the resulting algebraic expressions.

At first, assume that the Z-axis points to the pictorial plane, i.e. scene objects
have negative Z-coordinates, as is the case in  [1]. This model assumption was ab-
breviated by acronym neg above. Then, a correct formulation of the theorem is as
follows.

For the displacement differences  ux, uy, vx, vy   in case neg, the following abbre-
viations will be used:

A = (ux + 1)(vy + 1) - vxuy ,             B = uys2 - s1(vy + 1),

C = vxs1 - s2(ux + 1),                      D = uy
2  + vy(vy + 2),

E = vx
2  + ux(ux + 2) and      F = 2uy(ux + 1) + 2vx(vy + 1).

Theorem 1:  In case neg, the following constraint holds for shape p = p(x,y) and q =
q(x,y),

ap2 + bq2 + cpq + dp + eq + f = 0
with

a = r2s1
2  - B2, b = r2s2

2  - C2,

c = 2[r2s1s2 - BC], d = 2rs1s3(r - A),

e = 2rs2s3(r - A) and f = s3
2 [A(A - 2r) + r2] + C2D + BCF + B2E.

In the proof of this constraint, the surface normals of visible surfaces, given by  n
= (p,q,1) = (1,0,-p) x (0,1,-q), are considered. In the static case f1 = f2, it follows
that  a = b = ... = f = 0  as expected.

In contrast, in the case that the Z-axis is pointing into scene space (pos), for the
displacement differences the modified abbreviations

A = (ux + 1)(vy - 1) - vxuy ,               B = uys2 - s1(vy - 1),

C = vxs1 - s2(ux + 1),                        D = uy
2  + vy(vy - 2),
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E = vx
2  + ux(ux + 2) and        F = 2uy(ux + 1) + 2vx(vy - 1)

will be used.

Theorem 2: In case pos, the constraint

ap2 + bq2 + cpq + dp + eq + f = 0

for shape p = p(x,y) and q = q(x,y) holds for

a = r2s1
2  - B2, b = r2s2

2  - C2,
c = 2[r2s1s2 + BC], d = -2rs1s3(r + A),

e = -2rs2s3(r + A) and f = s3
2 [A(A + 2r) + r2] + C2D + BCF + B2E.

In this case, in the proof the surface normals of visible surfaces are given by  n =
(p,q,-1) = (1,0,p) x (0,-1,-q).

These differences in the cases neg and pos should illustrate how sensitive con-
straints will react on modifications in the model.

This integrative algebraic relation by Aloimonos and Shulman [1] between several
features may be read in different ways. For calculating the lighting direction, a scene
object with known shape may be used. But, typically in a scene analysis approach,
for analyzing shape this relation is defining a valuable constraint for shape. Some
experimental results applying this approach are given already in  [1].

3     Three Derivational Algorithms

By testing this approach on synthetic images, some detailed studies were possible.
Because of the small values of displacement differences, roundings in the used alge-
braic expressions (as changes between neg and pos) have dramatic impact on the
obtained practical results. The quality of the computable shape parameters depends
upon the complexity of the 3-D motion, where complex motion leads to better re-
sults. If only translation is assumed, then the results are very poor (For the case of
parallel projection, the simple additional influence of the translation on local dis-
placement was cited above. Thus, this additive constant disappears in the difference
functions.)

The second-order polynomial in p and q in Theorem 1 or 2 allows four different
algebraic solutions (p,q) in general. Thus, by three different polynomials
(constraints) a unique solution may be possible, and more than three constraints lead
to some balance calculation.

Starting with a first constraint   a1p2 + b1q2 + c1pq + d1p + e1q + f1 = 0  for
images f0  and f1 , then the two solutions

p =   
-qc1  -  d1  ±  g

2a1
  

follow with abbreviations

g  =  Gq2   + Hq  + J, G  =  c1
2   -  4a1b1 ,

H  =  2c1d1  -  4a1e1 ,   and J  =  d1
2   -  4a1f1 .

By insertion of these solutions of the first constraint into the second constraint a2p2

+ b2q2 + c2pq + d2p + e2q + f2 = 0  for images f0  and f2 , in the same point (x,y)
and thus for the same values p and q, it follows that
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h1  (h2q2  + h3 g  q  + h4 g   + h5q  + h6 )  = 0

with coefficients

h1  =  
1

4a1
2   ,

h2  =  a2 ( c1
2   + G )  +  4b2a1

2   -  2c1c2a1  ,

h3  =  2 ( c2a1  -  a2c1 )      resp.   h3  =  2 ( a2c1  -  c2a1 ) ,

h4  =  2 ( d2a1  -  a2d1)      resp.    h4  =  2 ( a2d1  -  d2a1) ,

h5  =  a2 ( H  +  2d1c1 )  +  2a1 ( 2e2a1  -  d2c1  -  c2d1 ),

h6  =  a2 ( d1
2   +  J )  -  2d1d2a1  +  4f2a1

2  .

By some algebraic operations, this simplifies to a fourth order polynomial

k1q4  +  k2q3  +  k3q2  +  k4q  +  k5  =  0
with coefficients

k1  =  Gh3
2   -  h2

2  ,

k2  =  2Gh3h4  +  Hh3
2   -  2h2h5,

k3  =  Gh4
2   +  2Hh3h4  +  Jh3

2   -  2h2h6  -  h5
2  ,

k4  =  Hh4
2   +  2Jh3h4  -  2h5h6 ,

k5  =  Jh4
2   -  h6

2  .

For the algorithmic solution of this fourth order polynomial, different methods
may be applied leading to different derivational algorithms  for deriving shape from
shading, motion, and lighting direction.

Algorithm 1 (algebraic method):  There are four (complex) solutions of this poly-
nomial, and these solutions are equal to

q  =  
-3k2N1/4  +  3 ( N3/4  +  2 O - P )

12k1N1/4     ,

q  =  
-3k2N1/4  +  3 ( N3/4  -  2 O - P )

12k1N1/4     ,

q  =  
-3k2N1/4  -  3 ( N3/4  -  2 O + P )

12k1N1/4     ,  and

q  =  
-3k2N1/4  -  3 ( N3/4  +  2 O + P )

12k1N1/4    .

using the abbreviations

K  =  k4
2 ( 4k1k3

3  -  k2
2k3

2 )   +  4 ( k2
3 k4

3   +  k5k2
2 k3

3  )  +  k1k5 ( 6k2
2 k4

2   -  16k3
4  )

-  18k3 ( k2k4
3 k1  +  k2

3 k4k5 )  +  27 ( k4
4 k1

2   +  k5
2 k2

4  )  +  80k2k4k5k1k3
2 

+ k5
2 k1

2 ( 128k3
2  +  192k2k4 )  - 144k3 ( k5k1

2 k4
2   + k5

2 k1k2
2  ) - 256k5

3 k1
3  ,

L  =  2k3
3   -  9k3 ( k2k4  +  8k5k1 )  +  27 ( k4

2 k1  +  k5k2
2  ) ,
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M  =  k1(4 (L + 3) 3 K )1/3  + (4 (L - 3) 3 K )1/3 ,

N  =   3k2
2  -  8k1k3  +  2M   ,

O  =  N ( 3k2
2  -  8k3k1  -  M )  ,  and

P  =  3 3 ( k2
3  -  4k2k1k3  +  8k1

2k4)  .

The computed four values of q are used to calculate eight related values of p. A
unique final solution could be computed by implementing evidence rules.

Algorithm 2 (numeric method): The fourth order polynomial in q given above may
be solved by a numeric iterative procedure following  [4]. Here, at first a function φ
for the iteration

qν+1 := φ(qν),  ν = 0, 1, 2, ....

has to be determined, and then in case of the convergence of the sequence  {qν}  the
limit is considered as a solution to the given polynomial.

Algorithm 3 (LSE optimization):  For a sequence of images f0, f1, f2, ..., image f0
is taken as reference where for points (x,y)  in image f0 the gradients have to be
computed. According to the given constraint in Theorem 1 resp. Theorem 2, for  f0
and fi  , i ³ 1, the difference of

errori (p,q)   =  ap2 + bq2 + cpq + dp + eq + f
to zero evaluates a gradient (p,q), and during processing of the image sequence, the
arithmetic mean value of squares of these errors errori (p,q)   has to be minimized
(LSE - optimization).

These three algorithms were implemented, and several synthetic scenes were used
as input. The synthetic object of a Lambertian sphere allows a good comparison for
all directions of surface normals in visible surface points, but complex graphical ob-
jects gave a good visual impression about the different qualities of shape reconstruc-
tion. The position of the point ligth source, i.e. vector s, was assumed to be identical
for each triplet of runs of the three different algorithms. This position of the light
source has some influence to the results in that sense that surface normals with direc-
tions orthogonal to the direction of vector s are hard to compute exactly in general.

By comparing these three derivational algorithms, the algebraic method is
computationally fast, very instable, and imaginary numbers appear and have to be
approximated. By this algorithm, only normals n = (p, q, -1) may be recognized
which form an angle less then 90° with the direction s to the point light source.

The numeric method is more stable with respect to the number of solutions (diffe-
rent picture points (x,y)) and their quality. If surface plane and picture plane are
close to being nearly orthogonal, errornous results may be avoided by a treshold.
Imaginary terms during iteration are taken as they are, and not approximated.
Typically, a very fast convergence was considered. An additional treatment of the
results by a Newton iteration did not lead to essential improvements.

The LSE-optimization has given in all experiments the best results. By specifying
the resolution during minimization, the quality of the results may be selected accor-
ding to possible computing time limitations. Even in the case of a coarse resolution,
say 10°, the computed gradients are quite accurate. Drawbacks of this algorithm are
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large time complexity and missing solutions for gradient directions close to 90°.

Fig. 1.  Needle map of difference vectors (!) and differences between computed and actual
normals in case of using the algebraic method.

Fig. 2.  Needle map of difference vectors (!) and differences between computed and actual
normals in case of using the numeric method.

Fig. 3.  Needle map of difference vectors (!) and differences between computed and actual
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normals in case of using the LSE optimization.

For the illustration of the three algorithms, in Figs. 1, 2  and 3, the resulting
needle maps of difference vectors (!) between surface normals and computed
normals are shown in case of a Lambertian sphere. In these figures, the two
diagrams have the following interpretation. In the upper diagram, the differences of
computed normals to the ideal normals (average of errors) are illustrated for the p-
direction, i.e. on the left the errors for normals in directions -90° ... 0°, and on the
right the errors for normals in directions 0° ... 90° are shown.

The p-direction means that the left half of the diagram illustrates the left semi-
sphere, and the right half the right semisphere. The lower diagram corresponds to the
q-direction, i.e. on the left the lower semisphere, and on the right the upper semi-
sphere is illustrated. The errors are shown as values between 0 and 90°. As shown in
these diagrams, the errors increase in each case if surface plane and picture plane are
close to being nearly orthogonal, and in Fig. 3, for the LSE-optimization, the errors
are smaller than in Figs. 1 and 2, for the algebraic resp. numeric method.

4     Summary

For a known integrative approach to shape analysis several algorithmic solutions
were realized and compared. Some detailed behaviour of the approach could be
analyzed, as, for example:

The direction s to the point light source has essential influence on the computed
normals. The critical situation is given if the direction s coincides with the optical
axis, i.e. the Z-axis, because in this case a = b = ... = f = 0 follows for the given
constraint. In case of the sphere, see Figs. 1, 2, and3, the normals on a diagonal
which is orthogonal to direction s, are hard to recognize because coefficients d, e
and f of the constraint are close to zero. Also, the 3-D motion of the objects has
essential impact. There should be rotations with respect to all three coordinate axis.
Normals orthogonal to the motion direction may be recognized very stable.

The realized algorithms are massively parallel. But, also in sequential mode they
may run even on a PC for demonstrational purposes.
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