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INTRODUCTION

The workshop Towards Benchmarking Automated Calibration, Orientation and Surface Reconstruction from
Images (BenCOS) of the International Society for Photogrammetry and Remote Sensing (ISPRS) focuses on
automatic methods for surface reconstruction from images, multi-view stereo, camera (self-) calibration, motion
estimation and related topics.

One major aim of the new Commission Ill on Photogrammetric Computer Vision and Image Analysis is to bring
together researchers from the related fields, and let them benefit from mutual experience. The Working Groups
Automatic Calibration and Orientation of Optical Cameras and Surface Reconstruction are co-chaired by
researchers from the Computer Vision and Photogrammetry communities.

Apart from being a forum for discussing new scientific results, the major goal of these Working Groups is to
establish true benchmarks for the performance evaluation of proposed methods. We believe this is a highly
important aspect of scientific research; it allows an objective comparison of different approaches, catalyzes
new developments, and eases the access of potential commercial users to these research areas and
communities. The motivation for this workshop is thus threefold:

e communication of new scientific results in the related areas,
e bringing together researchers from different communities, and
e working towards the definition of benchmarks.

The workshop proceedings include the ten presented papers. Reviewing was carried out in a double-blind
process by leading international researchers of the Computer Vision and Photogrammetry areas. Each full
paper has been reviewed by 3 members of the Program Committee.

We hope that all workshop participants will leave Beijing with the most rewarding memories in the scientific,
technical and social aspects, and that those unable to attend will find the proceedings a valuable source of
information.

Olaf Hellwich
llkka Niini
Camillo Ressl
Volker Rodehorst
Daniel Scharstein
Peter Sturm
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AUTOMATIC IMAGE SEQUENCE REGISTRATION BASED ON A LINEAR SOLUTION
AND SCALE INVARIANT KEYPOINT MATCHING

Z. Shragai, S.Barnea, S. Filin, G. Zalmanson, Y. Doytsher

Department of Transportation and Geo-Information, Technion — Isragl Institute of Technology, |srael
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Commission I11/1
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ABSTRACT:

Automatic registration of image seguences has been a subject of research for many years, both in the photogrammetric and computer
vision communities. As part of the automation, linear orientation methods are used to obtain approximations for a subsequent bundle
adjustment solution. Linear solutions can be at time "too general” particularly in a sense that they mostly employ uncalibrated cameras, a
fact leading to severely unstable results in most photogrammetric problems such as the case for the direct linear transformation (DLT) ina
nearly flat terrain. Furthermore, to the best of our knowledge, none of them handle more than two or three images simultaneously without
imposing severa theoretical constraints that cannot be guaranteed in practical imaging missions. In this paper a sub-optimal linear
solution for the exterior orientation parameters of image sequences is developed. The proposed method is demonstrated on an aerial
image strip. The paper shows that the method successfully generates reliable and accurate approximations both for the orientation
parameters as well as for tie point coordinates. For an automatic extraction of the latter, the Scale Invariant Feature Transform (SIFT)

algorithm is applied.

1. INTRODUCTION

It is commonly accepted both in photogrammetry and computer
vision communities that bundle adjustment is a "golden
standard" method for recovering exterior orientation parameters
from image sequences (Hartley et al., 2001). A bundle
adjustment process requires, however, good initial values for all
the six exterior parameter, as well as approximations for the 3D
coordinates of the tie points. To avoid the need for
approximations, a great deal of effort has been put on
developing general agorithms that provide linear solutions to a
variety of orientation problems (see e.g., Hartley et a.,2001;
Rother and Carlsson, 2001; Carlsson and Weinshall, 1998).
Many of them address a general problem in which the entire set
of camera intrinsic (calibration) and extrinsic parameters is
unknown. These solutions are stable and perform successfully
only in cases where no limitations on either the acquisition
geometry or the underlying object space are present. However,
for typical photogrammetric problems these solutions have not
yet proven useful. For example, the solutions proposed by
Hartley et al. (2001) and Rother and Carlsson (2001) require a
reference plane across any two images in a sequence. Carlson-
Weinshall duality algorithm (1998) requires a specific number
of points in a given number of images. Fitizgibbon and
Zisserman (1998) offer the use of the trifocal-tensor in a close
or open sequence. The trifocal-tensor does not suit, however,
the photogrammetric process because of its requirement for tie
points to appear in three sequential images. In the standard
photogrammetric process, with 60 percent overlap between
images, applying this model will relate to only 20 percent of
each image. Furthermore, most of the works do not refer to the
global exterior orientation parameters and produce only a
relative solution. Pollefeys et. al (2002a) offer a solution that is

based on sequentially linking and reconstructing image after
image, which is then followed by a bundle adjustment.

In this paper a framework for an automated photogrammetric
solution is presented. Our objectives are reducing the operator
input to a minimum and eliminating the reliance on initia
values for the computation of the exterior orientation
parameters. The proposed solution requires neither knowing the
order of the images nor their overlapping percentage. The only
external information required is the ground control points and
their corresponding image points. Solutions that follow a similar
line can be found in Nistér et al. (2004) where a sequence of
video frames is oriented and in Oliensis (1997) where an
iterative solution for weak motion (short baselines) image
sequences is presented.

As an outline, our solution detects first tie points in image pairs.
For this purpose the SIFT strategy (Lowe, 2004; Lowe 1999) is
used as described in Section 2. Following the autonomous
extraction of the tie point, comes the geometric computation.
The proposed geometric framework is founded on the Essential
matrix (Hartley and Zisserman, 2003). The Essential matrix
between every image pair is calculated and the five relative
orientation parameters are extracted. The geometric concept of
the pose estimation and the scene reconstruction are given in
Section 3. Section 4 presents experimental results and Section 5
concludes the paper.

2. EXTRACTION OF CORRESPONDING POINTS
The Scale Invariant Feature Transform - SIFT (Lowe, 2004;

Lowe 1999) is a methodology for finding corresponding points
in aset of images. The method designed to be invariant to scale,



rotation, and illumination. Lowe (2004) outlines the

methodology as consisting of the following four steps:

1. Scale-space extrema detection — using the difference of
Gaussian (DoG), potentia interest points are detected.

2. Locdlization — detected candidate points are being probed
further. Keypoints are evaluated by fitting an analytical
model (mostly in the form of parabola) to determine their
location and scale, and are then tested by a set of
conditions. Most of them aim guaranteeing the stability of
the selected points.

3. Orientation assignment — orientation is assigned to each
keypoint based on the image local gradient. To ensure scale
and orientation invariance, a transformation (in the form of
rotation and scale) is applied on the image keypoint area.

4. Keypoint descriptor — for each detected keypoint a
descriptor, which is invariant to scale, rotation and changes
in illumination, is generated. The descriptor is based on
orientation histograms in the appropriate scale. Each
descriptor consists of 128 values.

With the completion of the keypoint detection (in which
descriptors are created) the matching process between images
begins. Matching is carried out between the descriptors, so the
original image content is not considered here. Generally, for a
given keypoint, matching can be carried with respect to all the
extracted keypoints from all images. A minimum Euclidian
distance between descriptors will then lead to finding the
correspondence. However, matching in this exhaustive manner
can be computationally expensive (i.e, O(N?) with N the
number of keypoints). Common indexing schemes cannot be
applied to improve the search here because of the descriptors
dimensionality. However, an indexing paradigm, called Best
Bin First (BBF), is proposed by Beis and Lowe, (1997). The
BBF agorithm reduces the search to a limited number of the
most significant descriptors values and then tries locating the
closest neighbor with high probability. Compared to the
exhaustive matching, this approach improves the performance
by up to two orders of magnitude, while difference between the
amount of matched points is small. Our proposed solution
follows Schaffalitzky and Zisserman (2002) and Brown and
Lowe (2003) where all key points from all images are organized
in one K-d tree. Once a set of matching points has been
generated, another filtering process is applied. This process is
based on the RANSAC algorithm (Fischler and Bolles, 1981).
The fundamental matrix of the image pairs is calculated and
points that do not satisfy the geometric relation are filtered out
as outliers. Based on the matching, the order of images within
the image sequence is determined. When applying the SIFT
method for aerial images the huge image size may lead to the
extraction of numerous keypoints. Excess of information is
valuable for redundancy; however, it comes with high
computational cost. Experiments show, however, that even
downscaling the aerial image resolution satisfying amount of
keypoints has been provided. In comparative research presented
by Mikolajczk and Schmid (2003) the SIFT method has shown
superiority over classical methods for interest point detection
and matching.

Figure 1 shows the matched keypoints on an extract of two
overlapping aerial images. Generally, the agorithm extracted
~4000 keypoints per image, out of them 339 points were
matched with less than 5 pixels offset between corresponding
points. 146 keypoints have satisfied the geometric model with

less than 1 pixel between corresponding points. It is noted that
seven points are needed for computing the Fundamental matrix.
Experiments on different images with different characteristics
(e.g., vegetation, urban scenes) exhibited similar resuits.

Figure 1. Matched keypointsin an aerial image pair extract

3. THE GEOMETRIC FRAMEWORK

The input for the geometric process is a set of matched points
for al overlapping images. In addition, the Ground Control
Points (GCPs) and their corresponding image points are
provided. The solution considers the intrinsic parameters to be
known. The process consists of two main steps: first is finding
the relative orientation between all image pairs in the sequence.
The second is a simultaneous computation of a transformation
that takes into account the relative orientations and optionally
the control points. This step is performed linearly as a single
optimization process.

3.1 Relative Orientation

The first step is the linear computation of the Essential matrix
for each of the overlapping image pairs. The minimum number
of required tie points ranges between five (Nistér, 2004; Philip,
1996) to seven (Hartley, 1997).

Extraction of the rotation and translation parameters from the
Essential matrix can be carried out as proposed by Hartley and
Zisserman (2003). We begin with a singular value decomposing
of the Essential matrix: E=UDV" where U and V are chosen
such that det(U)>0 and det(V)>0. Assuming that the first
camera matrix is P = [I | 0], the second camera matrix can be
one of four possible choices:
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A reconstructed point X will be in front of both cameras only in
one of the four possible solutions. Thus, testing with a single
point to determine if it isin front of both cameras is sufficient
for the choice between the four possible solutions of P’ (Hartley
and Zisserman, 2003). To fine-tune the relative orientation
parameters, a non-linear geometric optimization can now take
place.

An important issue to account for is the degeneracy of the
Essential matrix which arises in the following cases (Torr et al.,
1999):
1. All points and camera centers laying on quadratic
surface (e.g., cone, cylinder).
2. Thereisno trandation between the images.
3. All tie paints lie on the same plane in object space.

Cases (1) and (2) are aso a degeneracy of the bundle
adjustment algorithm. Cases (2) and (3) are more common. For
these cases there is a simpler geometrical model — the
Homography. From a Homography one can retrieve the relative
orientation parameters as proposed by (Tsa et al., 1982). To
choose between the Essential matrix and the Homography, Torr
et a. (1999) proposes a measure they call Geometric Robust
Information Criterion (GRIC) that computes scores to the
fitness of the geometricad model for a given dataset. This
measure is also used by Pollefeys et a. (2002b). An alternative
way to avoid the degeneracy as in case (3) is using the five
point algorithm (Philip, 1996; Nistér, 2004). However, then a
tenth degree polynomial must be solved.

3.2 Global Registration

Following the computation of the relative orientation
parameters, we are provided with two camera matrices for each
image - one, which is fixed (when the image is the first in the
pair) and the other, which is relative (when the image is the
second). The first and the last images have only one camera
matrix. The task of concatenating the relative orientation
parameters into one global model is divided into two subtasks:
concatenating rotations and concatenating translations. The first
subtask can be described by arecursion formula:

Ra= RrinHHlR Where R =155 @

where Rr'n'_)“rlis the rotation in the mth model between the

images i and i+1. Concatenating the camera centers (translation)
in the sequence (the second subtask) is a more complicated
process. Here, similarly to the first subtask, there are two
trandation vectors for each image in the sequence (apart of the
first and last) one is fixed (in the origin) and the other is
relative. However, in contrast to the rotations, with the

translation concatenation all vectors are defined up to a scale
factor only. The scale ambiguity of each vector affects the size
of the reconstructed scene from each image pair, as Figure 2
demonstrates. In Figure 2, C; and C, are the camera centers of
the first and the second images. C; is the actual position of
image 3, so the scale of the trandlation vector ty; is correct — the
scenes reconstructed from images 1, 2 and images 2, 3 fit.
Contrary to Cs, a camera position in C3' leads to reconstructed
scenes that differ in scale. The recursion formula of the
tranglation concatenation should, therefore, have the form of:

t,=t+st”"" wheet =[0,00]" (@

Sy and t,, are the scale factor and the translation vector of the m-
model between imagesi and i+1.

-,",7
///
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Figure 2. Influence of the translation scale factor on the
reconstructed scene.

For solving al the translation scale factors together with the tie
point coordinates we now develop a simultaneous and linear
solution. The solution is derived from the camera matrix, P that
fulfills the relation x=PX, with X the coordinate vector of a
point in object space, and X is the image coordinate vector. Both
are given in homogenous coordinates (the last term of X and x
is set to 1). P may be decomposed into:

P=KHRI |-t] €)

with K is the camera calibration matrix and | a 3x3 identity
matrix. By substituting (1) and (2) into (3) a recursion formula
for the P matrices can be written as

P,=K-R™R-[I [t +t,"" ]

leading when inserted into the x=PX relation to

Xi+1:K'R+1'[| ‘ti+trlni)l+1's]' ()

r N < X

As K and R are known Vi , they are of no interest. We,
therefore, rewrite Equation (4) as follows
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with X = (KR) ™ X. Equation (5) provides a linear form for

the estimation of the point coordinates, X, Y, and Z, and the
scale s. Notice that with this model a point is reconstructed from
al itsinstantiations in all images. Each image point contributes
two independent equations. There is still one ambiguity left,
namely the scale of the first model. This ambiguity is solved by
the absolute orientation (into the object space reference frame).

Generaly, for each of the components (i.e., tie points and
camera matrices) one has to find a similarity transformation,
Xw=HsX, to the object space reference frame via the GCPs,

with Hg of the form:
R t
HS:{OT J ®

and A as the model scale. Linear solutions to this problem have
been offered by several authors, e.g., a quaternion based
solution (Horn, 1987), orthogonal matrices (Horn et al., 1988)
and the Rodriguez matrix (Pozzoli and Mussio, 2003).

An approach that simultaneously integrates the solution for the
scale parameters, tie point coordinates and the absolute
orientation parameters is now presented. For a control point that
appearsin an image, it is possible to use equation (7)

x=PH_ "X, @

with P as any projection matrix in the model space that acquires
the point X,,, and Hs given in Equation (6). In a simultaneous
solution, the scale factor A in Hs can be replaced by the scale
factor as given in Equation (2) for the first image pair. Hs
becomes now an Euclidian transformation with only six
parameters, whered = 1.

Substituting Hs ™ into equation (4) and multiplying both sides by
(KR will lead to:

X
. S ROT||Y (©)
c=[1 t|~>l+l. . .
)g+1 [ ; m Sm] {OT 1i| Z
l World
i LlRT ; '
with Hs ™= . Equation (8) can be rearranged as:
o 1
X
A NN Y 9
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1 \World

Equation (9) provides a linear form for the estimation of the

scale factors sy, the global trandation T and the nine rotation
matrix terms. In this representation a 3D affine transformation is
solved. This model requires at least four control points.
Restricting the solution to a 3D rotation (namely maintaining
the orthonormality) can be achieved by using the identity matrix
instead of the singular values in the SVD of R. Using Equation
(5) for tie points and (9) for control points, we are provided with
a simultaneous and linear solution. This solution allows having
the external effect of control points and the internal constrains
of the tie points weighted in simultaneously. Furthermore,
control points that appear in only one image can also be taken
into account. This solution offers an alternative to the two steps
procedure. However, it is noted that it is not optimal in the sense
of solving nine parameters explicitly instead of an orthonormal
rotation matrix. Experiments with this method yield good
results only under specific configurations.

4. EXPERIMENTAL RESULTS

The proposed method is now investigated using synthetic and
real data. The sensitivity of the geometric model to additive
Gaussian noise is tested first, followed by an application of the
process on a strip consisting of four images.

4.1 Synthetic Data

A synthetic configuration that follows typical mapping-mission
characteristics was designed with the following parameters,
flying dtitude, 1700 m, terrain variation ranging between O-
200m, and a focal length of 153 mm. The test set consisted of
four images in a sequence with 60 percent overlap. The pitch
and roll angles were in the range of +2°. For each image pair
~50 tie points were provided. Six ground control points were
used. To investigate the sensitivity of the proposed to random
errors Gaussian noise with zero mean and standard deviation
ranging between 0.0 and 0.3 mm has been added to image
coordinates of control and tie points. The maximum standard
deviation (0.3 mm) is equivalent to an error of 20 pixels for
scanning resolution of 15u.

Given this input, fundamental matrices were computed and
normalized by the known interior camera parameters to form
the Essential matrix. Then, a decomposition of the Essentia
matrix to the rotation and translation components was carried
out, followed by up to five (non-linear) iterations to optimize
the computed R and t values. The transformation into a global
reference frame was computed using Equations (5) and (6).
Rodriguez matrices were used to represent rotations. For each
noise level 100 trials were performed. Results were evaluated
by three measures: the std. of the 3D Euclidean distance
between the computed object point coordinates and the actual
ones, both for tie and control points (Figure 3), the offsetsin the
camera positions, again in terms of std. of the 3D Euclidean
distances (Figure 4) and the angular error of the three camera
rotation parameters (Figure 5). Results were compared to
bundle adjustment solution, as shown in Figures 3-5. The
experiments show that even in the presence of a severe noise
reasonable and acceptable solutions can be achieved by the
proposed geometric model. Indeed, bundle adjustment solution
performs better than the sub-optimal solution, which is of no
surprise, but the fact that the results obtained using our method



do not fal too far from the optimal solution makes it a good
candidate to precede any subsequent optimal solution. Also, the
deviations in orientation parameters fairly compare with
accuracies obtained with typical GPS/INS systems.
Furthermore, under realistic noise level, these results satisfy the
requirements of some applications — thus avoiding a subseguent
use of bundle adjustment.

4.2 Real Images

An experiment with a strip consisting of four aerial images with
flying altitude of 1800 m, and a focal length of 152 mm is now
presented. Eight GCPs were available for this image set. The
four images are arranged in an L shape form (see Figure 6);
their order is not provided as an input. The image coordinates of
the GCPs were manually digitized. Tie points were generated
using the SIFT procedure. Globally there were ~1000 matched
keypoints. About 300 matched points between images with
similar orientation (image pairs 1-2 and 3-4), and about 60
matched points for image pair 3-4. Between image triplets about
10 common points were detected.

To evaluate the quality of the two-steps method the orientations
were computed first by this procedure only, and then using a
bundle adjustment solution. For the bundle adjustment solution
the parameters originating from the linear procedure were used
as initial approximations. To evaluate the difference between
solutions we compare the reconstructed tie point coordinates
between the two-steps solution and the bundle adjustment.
Results show that the mean distance between the two methods is
0.33 m. However, the accuracy estimate of the points achieved
by the bundle adjustment procedure is about +1 m. This
difference is within the uncertainty range of the tie points
coordinates. These results are in agreement with those achieved
by the synthetic data experiments in Section 4.1 and indicate
that the proposed method can be used as an independent
solution when achieving high level of accuracy is not a concern
and also as an initia values generator for a bundle adjustment
solution.

5. SUMMARY AND CONCLUTIONS

Recent years have seen a significant progress made in
automation of registration processes. At the same time advances
have been made in the field of multi-view geometry. This paper
has demonstrated the integration of these two disciplines. No
assumptions on the order of the image sequence have been
made to execute the proposed linear solution for estimating the
camera parameters. Experiments made have demonstrated
robustness and stability of the proposed geometric solution even
to severe noise levels. Those with real data showed that even
with non-standard image configuration a full automation can be
achieved.

Figure 3. Mean error of the reconstructed points. The X-axisis
the noise level in millimeters and the Y-axis represent the
ground error (distance) in meters. The error bars represent + 2¢
of the accuracy range as resulted from the trials for each noise
level.

Figure 4. Mean error of the reconstructed image positions
parameters. The X-axis is the noise level [mm] and the Y-axis
represents the image positions error (distance) [m]. The error
bars represent + 2c of the accuracy range as resulted from the
trials for each noise level.

Figure 5. Mean error of the reconstructed camera angles. The
X-axis is the noise level in mm and the Y-axis represent the
angular error [°]. The error bars represent + 2¢ of the accuracy
range as resulted from the trials for each noise level



Figure 6. Outline of the aerial image arrangement used for the
experiment. Triangles depict control points.
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ABSTRACT

In this paper we propose a strategy for the orientation and auto-calibration of wide-baseline image sequences. Our
particular contribution lies in demonstrating, that by means of robust least-squares adjustment in the form of bundle
adjustment as well as least-squares matching (LSM), one can obtain highly precise and reliable results. To deal with large
image sizes, we make use of image pyramids. We do not need approximate values, neither for orientation nor calibration,
because we use direct solutions and robust algorithms, particularly fundamental nfatticiesal tensors/, random

sample consensus (RANSAC), and auto-calibration based on the image of the dual absolute quadric. We describe our
strategy from end to end, and demonstrate its potential by means of examples, showing also one way for evaluation. The
latter is based on imaging a cylindrical object (advertisement column), taking the last to be the first image, but without
employing the closedness constraint. We finally summarize our findings and point to further directions of research.

1 INTRODUCTION computingF and7, robustified by means of random sam-

ple consensus (RANSAC), as well as linking triplets via

(Hartley and Zisserman, 2000) has transformed the art 03D projective transformation. All, including intermediate
producing a Euclidean model from basically nothing intoresults of projective reconstruction are improved via robust
text-book knowledge. As can be seen from recent exarPundle adjustment, important issues for which we explain
ples such a$ (Niat, 2004| Pollefeys et al., 2004, Lhuillier in Sectiorf #. As we deal with images of several Mega pix-

and Quan, 2005) a very high level has been reached.  €ls, we employ image pyramids including tracking points
via LSM through the pyramid (cf. Sectigr} 5). The pro-

We also head into this direction, making it possible to genjective reconstruction is upgraded to Euclidean via auto-
erate a Euclidean three-dimensional (3D) relative modegalibration, described in Sectiph 6. In Secfion 7 we demon-
(no scale, translation, and rotation known, i.e., seven destrate the potential of our strategy, particularly the high ge-
grees of freedoms undefined) from not much more thawmetric precision and reliability achievable by means of
the images and the knowledge, that the images are peleSM and bundle adjustment by means of an experiment
spective and sufficiently overlapping. Besides the latterspecifically designed to evaluate the precision of the 3D
we make two in many practical cases reasonable assumfgconstruction. Finally, we present a summary and direc-
tions, namely, that the camera is not too strongly (beloviions for further research.

about 15) rotated around its optical axis between consec-

utive images and that all images are taken with one set of2 POINT EXTRACTION AND LEAST-SQUARES

calibration (interior) parameters. The latter has to be true MATCHING
only approximately. While we cannot deal with zooming,
we found empirically, that we can handle focusing. We start by extractingétstner|(forstner and @lch, 1987)

The strat that we or rticularly f n ropoints. An even distribution of the conjugate points on the
€ strategy, thal we propose, particularly focuses on r Image is enforced if possible by regional non-maximum

- i | | ’) . . . . .
bust least-squares adjustmeft (Mikhail et al., 2001) i uppression in the reference image of a particular matching

the form of bundle adjustment and least-squares matchin& . ; ;
. e , ep. No suppression is employed in the other images, be-
(LSM). By means of affine LSM, we obtain highly precise ause due to noise and occlusions the regionally strongest

: ; X . .~ C
conjugate points. Together with bundle adjustment, Wh'dboints in two images do not have to be the conjugate points.
we use for the computation of every fundamental marix

as well as trifocal tenSd’d, and after ||nk|ng tripletS via 3D Contrary to most approachesl we do not use the coordi-
projective transformation, we obtain highly precise and ahates of the points for the conjugate points directly, but we
the same time reliable solutions. This is demonstrated bMetermine relative coordinates by Se|ecting one image and
means of two examples, in one of which a cylindrical ob-determining the relative shift of image patches around the
ject (advertisement column) was imaged with 28 imagespoints in the other images via LSM. This has the big ad-

Even though the information, that for the last image theyantage, that we obtain an estimate of the precision of the
first has been taken, has not been used in the adjustmegatch.

the cylinder is preserved very well.

To be able to deal with large baseline scenarios, we use as
Basically, our strategy rests on extracting points which wesearch space the size of the image. This naturally leads to
match highly precisely with LSM (cf. Secti¢n 2). Section a large number of hypotheses. As LSM is computational
[3 explains how hypothesis for conjugate points underg@xpensive, we first sort out unlikely candidates for conju-
rigorous geometric checks by projective reconstruction viaggate points by means of normalized cross correlation. We
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particularly have found that correlating in red, green, andand 7. As we are dealing with a relatively large num-

blue and combining the outcome by means of multiplica-ber of outliers in the range of up to 80%, RANSAC be-

tion is a good choice for making use of color information. comes especially for the computationoextremely slow.

We employ a relatively low threshold 6f72 to keep most  This is mostly due to the fact, that for reliably estimating

of the correct points. Experiments with color spaces havd, it is necessary to compute a point-wise bundle adjust-

not been successful as we found the color information tanent. We use a modified version of RANSAC speeding up

be mostly noisy, leading to bad correlation in the chromi-the computation by more than one order of magnitude for

nance, etc., band. high noise levels, where as shown|in (Tordoff and Mufray,
2002), often much larger numbers of iterations are needed

As color information has already been used, we do nofo obtain a correct result than predicted by the standard for-

make use of it for LSM. For it, we employ affine geo- mula given in[(Hartley and Zisserman, 2003).

metric transformation, because the parameters for a projec-

tive transformation cannot be reliably determined for im-

age patches in the range bf x 11 pixels. Additionally 4 ROBUST BUNDLE ADJUSTMENT

to the the six affine geometric parameters, we determine a

bias and a drift (contrast) parameter for the brightness. Fddundle adjustment is at the core of our strategy. We have

two images we just match the second to the first. For threfound, that only by adjusting virtually all results, we ob-

and more images we determine an average image in tHgin a high precision, but also reliability. The latter stems

geometry of the reference image. Matching against it, wérom the fact, that by enforcing highly precise results for a

avoid the bias by a radiometrically badly selected referenckrge number of points, one can guarantee with a very high

image (e.g., distorted by occlusion). likelihood, that the solution is not random.

The result of this step are highly precise image coordinateBasically this means, that when estimatifgand 7', we
for the conjugate points including an estimate of the precompute the optimum RANSAC solution for junks of sev-
cision. This value is mostly over optimistic (one often ob-eral hundreds of iterations and then we run a projective
tains standard deviations in the range of one hundredth oflundle adjustment on it. This is done a larger number of
pixel), but they still give a good hint on the relative quality times (we have found empirically five to be the minimum
of the solution obtained. number), as the bundle adjustment solution is partly much
better than the RANSAC solution and its result can vary a
lot. But having several instances of bundle solutions, there
3 ROBUST PROJECTIVE RECONSTRUCTION is nearly always one which is sufficiently precise and rep-
resenting the correct solution.
The conjugate points of the preceding section are input for
projective reconstruction. Basically, the goal is reconstrucWe employ projective as well as Euclidean bundle adjust-
tion of the whole sequence. Because of the inherent nois@ent, both including radial distortiafs = 1. + ko * (r? —
and due to problems with similar and repeating structures?) + k4 * (r* — r3) with r the distance of a point to the
as well as occlusions, the strategy needs to be rather robugtincipal point (or its estimate) ang the distance where
and at the same time efficient. ds is 0. rq = 0.5 is used as recommended in literature and
empirically verified. We have found by a larger number of
We have decided to use triplets as the basic building blockxperiments, that it is important to employ radial distortion
of our strategy. This is due to the fact, that by means obnly after outlier removal. Itis not used at all for the deter-
the intersection of three image rays one can sort out wronghination of F or 7, but only after we have tracked down
matches, i.e., outliers, highly reliably. Opposed to thispoints to the original image resolution (cf. below).
one cannot check the depth for image pairs, as the only
constraint is, that a point has to lie on the epipolar line We originally wanted to employ standard least-squares ad-
Even though using triplets as basic building block, com4justment without Levenberg Marquardt stabilization (Hart-
binatorics suggests to actually start with image pairs, reley and Zisserman, 2003), to avoid a bias during estima-
stricting the search space via epipolar lines. For the adion. Therefore, we are using the SVD-based minimal pa-
tual estimation of the relations of pairs and triplets we em+ameterization proposed ih (Bartoli and Sturm, 2001) for
ploy F and7 (Hartley and Zisserman, 2003). Triplets are the first camera for projective bundle adjustment. Yet, we
computed sequentially and are linked by means of projectiave found, that only by means of a Levenberg Marquardt
ing points of the preceding triplet via the névinto the  stabilization we can deal with the large initial distortions
new last image resulting into (n+1)-fold points as well asof the solution caused by outliers. Particularly, this means,
computing the projection matrix of the last image via 3Dthat we multiply the elements of the diagonal of the normal
projective transformation for the first and second but lasequations withl + stab, the stabilization parametatab
images. (Projection matrices férand7 can be obtained being adaptively determined by means of varying it with a
with the standard algorithms explained|in (Hartley and|Zisfactor of 10 between 1.e-5 and 1.

serman, 2003).) Finally, points not yet seen are added.
We base the robustness of bundle adjustment on standard-

Of extreme importance for the feasibility of our strategy isized residuals;; = v;/o,, involving the standard devia-
the use of robust means, particularly RANSAC (Fischlertionsa,, of the residuals, i.e., the differences between ob-
and Bolles, 1981), that we use for the computatior-of served and predicted values. As a first means we employ
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reweighting withw; = /2 + ;2 (McGlone et al., 2004). the principal point inz- andy-direction, and finallys the
Additionally, having obtained a stable solution concerningsheer, i.e., the deviation of®° angle between the- and
reweighting, outliers are characterized #3yexceeding a they-axis. The latter can safely be assumed to be zero for
threshold, which we have set to 4, in accordance with thedigital cameras.

oretical derivations and empirical findings, eliminating the L
outliers for the next iteration. To computeK and a transform to upgrade our projective to

a Euclidean configuration, we use the approach of Polle-
For bundle adjustment, efficient solutions are extremelyfeys (Pollefeys et al., 2002, Pollefeys et al., 2004). It is
important. E.g., a 29 image sequence as the one presenteased on the image of the dual absolute quadric
below leads to more than thirty thousand unknowns, mak- . T T
ing straightforward computation impossible. We therefore w' KK ~ PP
follow (Mikhail et al., 2001) and reduce the normal equa-which is related to the calibration matrix multiplied with
tions in two steps: First, we reduce the points. Secondlyany scalar# 0 (K) and the dual absolute quadfitt, pro-
we also reduce parameters which are common to all, or gécted by the projection matric& (Pollefeys et al., 2002,
least sets of images, namely the calibration and / or (répolefeys et al., 2004) employ knowledge about meaning-
dial) distortion parameters. This results into a tremendoug| values and their standard deviations for the parameters
reduction in computation time and storage requirementsyf K to constrain the computation 6f such as, that the

even when computing alsg,,. principal distance is one with a standard deviation of nine
and all other parameters are zero with standard deviations
5 HIERARCHICAL PROCESSING VIA of 0.1 for the principal point and: and0.01 for s. The re-
PYRAMIDS sultis a transformation matrix from projective to Euclidean

space and onk for every image.

As we deal with relatively large images in the range of 5 . . . '
Mega pixels or above and we assume at the same time, th\é\{e have experienced, that the resulting Euclidean config-

we do not know the percentage or direction of overlap 0f.Jration can be some way off the final result, especially for

the images, only a hierarchical scheme allows for an ad%gnger sequences. I.e_., fpr the_ sequence of 29 images be-
ow, the estimated principal distance, known to be con-

quate performance. We particularly compute image onrastant, varied betweef.3 and 3. To avoid this problem,

we have found it to be sufficient to compute the calibration
for the first few images and transform the rest of the se-
guence accordingly. Though this has worked for our exper-
iments, a better way might be to define a number of images
n, say three or five, and compute the calibration, which is
We do not computd on the fourth highest or lower lev- of very low computational complexity, for all subsequent
els, firstly due to the complexity of the matching and sec+: images. Finally, the solution should be taken with the
ondly because already on the second or third highest levéimallest summed up standard deviation of all parameters
we obtain for most sequences hundredth of points, morér the averag&.

than enough for a stable and precise solution. To still use q q by th . bel b
the information from the original resolution, we track the S démonstrated, e.g., by the experiments below, robust

points via LSM down to the original resolution once the bundle adjustment including radial distortion is an absolute

sequence has been oriented completely on the second st after calibration. We start with configurations where

third highest level. This is rather efficient also for imagest® Pack projection errors can be in the range of several

of several Mega pixels. As reference image we use for eyUNdred pixels. This stems from the fact, that the cali-
ery point the image, where the point is closest to the centé?rgt'on procedure produces Iocallly vgry|Kg(qf. abov_e).

of the image, assuming that there the perspective distortiofSind Levenberg Marquardt stabilization, it is possible to
of the patches around the points is minimum on averagé’rlng dgwn theses 'arge,va'!JeS to fractions of a pixel. In
After tracking, a final robust projective bundle adjustmentthe beginning the multiplication factor for the elements on

is employed, at this time including radial distortion. the main diagonal can be as high as two, k& = 1.

mids with a reduction factor &f. For the highest level we
found that a size of abodti0 x 100 pixels is sufficient in
most cases. On this level we compite] are computed
on the second highest and for images with a size of mor
than1000 x 1000 pixels also on the third highest level.

Because also after projective bundle adjustment there still
6 AUTO-CALIBRATION can be a large number of outliers, also the strategy for bun-
dle adjustment was found to be very important. This is due
To proceed from projective to Euclidean space, one needs the fact, that we accepted sound configurations in pro-
to estimate the position of the plane at infinity, as well  jective space, which yet can imply relatively differeft
as the calibration matrix Optimizing all parameters of an averagesimultaneously
can lead to initially very wrong values far, yo, ands.
¢ c-8 Xg . . .
_ It was therefore found to be very important to first opti-
K= c-(1+m) yo : e
1 mize onlyc andc- (1 +m), and to optimize the rest of the
parameters only when this adjustment has converged. Op-
with ¢ the principal distancer the scale factor betwean  timizing ¢ andc - (1 4+ m) independently makes the whole
andy-axis, needed, e.g., for video cameras with rectanguprocedure less stable on one hand, but allows on the other
lar instead of quadratic pixelsy andy, the coordinates of hand to check the quality of the result by comparing both.
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7 EXPERIMENTS AND EVALUATION number images 8
oo projective / Euclidean 0.39/0.30 pixel
1.247 —0.001 —0.004

In this section we report about results for the proposed

strategy and propose one means to evaluate results. All K 1.251 0'0?24
images used in the experiments shown here have been ac Ty Ty (radial distortion) 0.0417-0.069

quired with the same camera, namely a Sony P100 5 Mega
pixel camera with Zeiss objective using the smallest possi- Table 1: Results for sequence yard
ble focal length / principal distance to optimize the geom-

etry of the interseqtions. To guaf?r.‘tee sharp images (artgf the 28 approximately evenly spaced images of the ad-
to make the experiments more difficult), the camera WaSertisement column / cylinder, the first three and the fifth

ag?vc\i’g ?atnocél:to\;\flgcflijrz,t Ierae('jslgr?t E{%;EZSK }’;r)glqg g;gr(: @are shown in Figurig]3. Four other images, showing the va-
P ' P . pﬁety of texture found on the column, are given in Figure
out of tens, namely the scene yard, for which our stra

egy works reliably using the same set of parameters. l.e7,

one acquires the images, runs the program implementingo; the evaluation we have devised three experiments. The
the strategy and obtains the result consisting of 3D points; st is with the original resolution 592 x 1944 pixels,
camera translations and rotations as well as the calibratioge second with the resolution reduced by a factor of three,
all including standard deviations. i.e.,864 x 648 pixels, and for the last experiment we have
reduced the resolution by a factor of three and the number
Additionally, we report about one experiment we have deof images, wherever there is enough texture, by a factor of
vised to evaluate the quality of the solution. For it we ac-two. l.e., we have taken the first, third, and fifth image,
quired 28 images of an advertisement column, which isetc., as shown in Figufé 4.
close to a perfect cylinder. The images have been taken
walking unconstrained, so there is some flexibility in theOn the original resolution we obtained 2498 threefold,
orientation. Though, by always trying to be able to see th&387 fourfold, 2559 fivefold, 1085 sixfold, 309 sevenfold,
whole width of the column, there was a strong constraineind 45 eightfold points, as well as one ninefold point re-
to actually take the images from positions on a circle. sulting in a back projection error of, = 0.1 pixels on the
third highest pyramid level and ef, = 0.29 pixels after

The scene yard consists of eight images taken in a baciracking <_jown to the original resolution. Auto-calibration
yard. The first three images and the last image are given ifgSulted into estimated = 1.04 andc - (1 +m) = 1.05.
Figure[1. Figuré 2 shows a view on the resulting VRML The resulltlng configuration is given in Figdrg 5 left. The
model. For the sequence we have obtained 426 threefoRRCK Projection error has been in the range of 500 pixels
points, i.e., points which could be matched in three im-before bundle-adjustment. Bundle adjustment reduced it
ages, 377 fourfold, 228 fivefold, 103 sixfold, and 20 sev-10 0-19 pixels. The final result is very close to a perfect
enfold points resulting in an uncalibrated back projectiorYlinder as proven by Figufg 5 right.

errorog of 0.39 pixels and & of 0.3 pixels after calibra- Table[2 shows a comparison of the results. They are
tion. Further parameters such as the calibration mtrix rather similar for the orFi) inal and the reduced resolztion
can be found in Tablg 1. 9

sequence. This suggests, that probably because of the rela-
tively small pixel size of the employed mid-end Sony P 100
consumer camera, the original resolution does not convey
much more information than the reduced resolution. Sim-
ilar findings have been made for other sequences. On the
other hand, the results for the sequence with the reduced
number of images are rather different. This probably stems
from the fact, that the overlap between the images is small
and the view angles on the surface are partly rather large.
For large areas of weak or no texture, such as in image thir-
teen (cf. Figurg€}4), we even had to use the original configu-
ration. One can see this, e.g., as a hole in the upper right of

: ]
By } the cylinder in Figur¢ 5, right. The comparison of Tables
it o ;l' and 1 shows, that even though the time between acquir-
) 3 ing the cylinder and the yard sequence was about one year,
~ 33 all the parameters including the distortion are rather simi-

lar, if enough images were used for the cylinder sequence.
(Please remember, that the same camera has been used.)

For the evaluation of the different versions of the cylinder
Figure 2: Visualization of points (red) and cameras (greesequence, we have taken the firstimage to be the lastimage
pyramids) of model yard of the sequence as well. Instead of using this information

in the bundle adjustment, we employ it for evaluation by
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Figure 1: First three images and image eight, i.e., last image, of sequence yard

Figure 3: First three images and fifth image of the original sequence cylinder with 28 images

Figure 4: Images eight, thirteen, eighteen and twenty three of the original sequence cylinder

o/

id

Figure 5: Result for the original sequence cylinder before (left) and after (right) robust Euclidean bundle adjustment. The
first and the last camera are marked as black and blue and the rest of the cameras as green pyramids. Points are shown in
red.

comparing the parameters of the first and the last camera, 8 SUMMARY AND CONCLUSIONS
which ideally should be the same. Taple 3 gives two dif-

ferent types of descriptions, namely the translation-in . .
y-, andz-direction of the first= last camera in relation to We have shown, that via least-squares adjustment based
Hechmques, particularly least-squares matching and bundle

the radius of the circle constructed by all cameras, as well v stment. hiahlv precise and at the same time reliable
as the difference in rotation (this is the rotation angle of an ) » Nighly p

axis-angle representation), the latter also in terms ofasinr—esu'tS can be obtained. This has been demonstrated by
jeans of a cylindrical object, for which it was shown, that

gle image. One can see, that the difference is rather sm . :
e ring of cameras closes very well and for which at least

for the original as well as for the sequence with reduce lisually also the shape is preserved extremelv well. B
resolution. Only for the sequence with the reduced num- y P P y - By

: . = : ... means of enlarging the distance between the cameras, we
ber of images there is a significant reduction of the qua“tyhave shown difficulties of the strategy when using a weaker
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original resolution reduced by 3 reduced number images
number images 29 29 22
oo projective / Euclidean  0.29/0.19 pixel 0.12/0.08 pixel 0.24/0.13 pixel
1.239 0.0002 0.002 | 1.242 0.0001 0.003 1.168 —0.0006 —0.0015
K 1.241 0.0001 1.241 —0.0003 1.179 —0.0062
1 1 1
ko I k4 (radial distortion) -0.040/-0.060 -0.043/-0.053 -0.041/-0.069

Table 2: Results for sequence cylinder

original resolution reduced by 3 reduced number images
dx | dy I dz in % of radius circle images 3.5/-0.36/0.74 3.8/-0.81/0.8 7.1/-1./1.1
d¢ global /d¢ per image 5°/0.18° 5.8°/0.21° 8.7°10.41°

Table 3: Differences in translation and rotation of the parameters of the-flett image of sequence circléz, dy, and
dz are given in relation to the approximate radius of the circle constructed by the camera positions.

geometry. Hartley, R. and Zisserman, A., 2000. Multiple View Ge-
ometry in Computer Vision. Cambridge University Press,

Afirstissue for further research is a more quantitative evalCambridge, UK.

uation of the shape of the given object. This could be done

in our case by fitting a cylinder to the object and determin-Hartley, R. and Zisserman, A., 2003. Multiple View Ge-

ing the distances from this cylinder. Though the object isometry in Computer Vision — Second Edition. Cambridge

not an ideal cylinder, it should be rather close to it. University Press, Cambridge, UK.

Calibration is a further issue. Here the approach of @fjst Lhuillier, M. and Quan, L., 2005. A Qasi-Dense Ap-
yroach to Surface Reconstruction from Uncalibrated Im-

2002) based on the cheirality constraint seems to be e® . . :
tremely promising. We also still need to deal with planarages' IEEE Transactions on Pattern Analysis and Machine

parts of the sequence. For this we want to follpw (Pollelfeygmel“gence 27(3), pp. 418-433.

et al., 2002), though we note that we have found the isp gye D., 2004. Distintive Image Features from Scale-
sue of model selection (homography versusr 7) rather |y ariant Keypoints. International Journal of Computer Vi-
tricky. sion 60(2), pp. 91-110.

Finally, an issue that we see as particularly important taMcGlone, J., Bethel, J. and Mikhail, E. (eds), 2004. Man-
achieve the goal of being able to orient also traditional phoual of Photogrammetry. American Society of Photogram-
togrammetric close range image setups is matching whicthetry and Remote Sensing, Bethesda, USA.

is more invariant with respect to strong geometric distor-

tion. For it we find especia”y (Georgescu and Meer, 2004j\lllkhall, E., Bethel, J. and McGlone, J., 2001. Introduction

and [Lowe, 2004) very interesting. to Modern Photogrammetry. John Wiley & Sons, Inc, New
York, USA.
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ABSTRACT:

In this paper we explore the relative efficiency of various data-driven sampling techniques for estimating the epipolar ge-
ometry and its global uncertainty. We explore standard fully data-driven methods, specifically the five-point, seven-point,
and eight-point methods. We also explore what we refer to as partially data-driven methods, where in the sampling we
choose some of the parameters deterministically. The goal of these sampling methods is to approximate full search within
a computionally feasible time frame. As a compromise between fully representing posterior likelihood over the space of
fundamental matrices and producing a single estimate, we represent the uncertainty over the space of translation direc
tions. In contrast to finding a single estimate, representing the posterior likelihood is always a well-posed problem, albeit
an often computionally challenging one. Furthermore, this representation yields an estimate of the global uncertainty,
which may be used for comparison between differing methods.

1. INTRODUCTION

Estimation of the relative orientation between two images
is an extensively researched subject in computer vision.
Many methods have been proposed and the state of the art
is now quite elaborate and mature. In our view, the main
requirements on an estimation method are that it

¢ |s accurate (both locally and globally)

e |srobust

¢ Is computationally efficient

e Can exploit all constraints, exact and approximate

e Gives a truthful uncertainty estimate (local and

global) Figure 1. We derive an uncertainty representation for
It is widely accepted that accuracy is best achieved with it- g : y rep

) . } epipolar geometry parameterized by the epipole in the first
1 12 c0stfunction that s derived flom a reaisi model M20S: The figure shows an examl o the uncertainty
of the problem. However, bundle adjustment is dependenrepresentatlon_when_the number of point correspondences
on an initial sterting point,and only achieves what we referIg too low, Ieadmg to mt_nca_te patterns of probabmty Mass.
to as local accuracy, which is the ability to precisely pin-The global maximum is circled, b.Ut notice the multiple
. o . npeaks captured by the representation.
point a local minimum of the cost function. Perhaps eve
more important and challenging in computer vision is to,
insofar as possible, achieve global accuracy, which is the Gauging the uncertainty is important, since without a
ability to reliably locate the global minimum of the cost notion of how likely it is that the estimate at hand is in
function. error, it is very hard to take any useful action based upon
Robustness is achieved by using an appropriate dat& It is best-practice to gauge local uncertainty around an
model that includes data distortions and outliers. Com-estimate by analyzing the local shape of the cost function
putational efficiency is always desirable, although the rearound the minimum. However, such an uncertainty mea-
guirements are more stringent in some applications thasure only makes sense if the global minimum was truly
others. It is likewise desirable to use all available con-found. Moreover, it assumes that the cost function is uni-

straints, such as camera calibration information. modal and nicely behaved. This is seldom the case. Due to
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outliers, noise, the nonlinear nature of the problem, pIanaB . DATA DRIVEN SAMPLING
scenes and small translation, the cost function may lack a

clear global minimum or have several throughs of compli- o
cated shape. As argued above, we can not search the likelihood over

the whole parameter space. Several authors have noted

Therefore, to assess global uncertainty, an estimatiog1 . -
. ) . at it can be much more efficient to search the parame-
method should ideally provide a representation of the pos:

terior probability distribution over all the regions of pa- ter space with data-driven hypothesis generators [2, 25].

rameter space where the probability is sianificant We will use hypothesis generation in a similar manner as
P P y 9 ' in RANSAC [7], where minimal samples of correspon-

For strong data, producing a single estimate is possiblejences are randomly chosen from the whole set of corre-
However, there will always be situations with ambiguousspondences. A minimal sample contains the smallest num-
data, in which obtaining a single estimate is essentially amer of data points that will determine the geometric rela-
ill-posed problem. On the other hand, provided we havejon up to a finite number of solutions. The samples are
selected an appropriate data model, representing the pograde minimal to minimize the risk of including devastat-
terior distribution is always a well-posed problem. Repre-ing outliers. In this case, a minimal sample contains seven
senting the posterior may be computationally difficult, butcorrespondences for the fundamental matrix and five for
itis well-posed for any input data. the essential matrix. We refer to this as fully data-driven

Our approach draws upon background material in probsampling, since the correspondences ideally should deter-
abilistic Bayesian frameworks and multiple view geome-mine the fundamental matrix. We will also use partially
try. Due to space limitations, we by necessity have to asdata-driven sampling, where for a given translation direc-
sume that the reader has some familiarity with these contion, we take samples containing the smallest number of
cepts. The interested reader is referred to [4, 5, 20] for théorrespondences that will determine the remaining param-
former and [6, 9, 15] for the latter. eters of the fundamental matrix up to a finite number of

solutions. The samples contain five correspondences to
determine the fundamental matrix in the uncalibrated case
and three correspondences to determine the essential ma-
trix given translation direction in the calibrated case.

2 . APPROACH
4 . REPRESENTATION

If we can derive an accurate representation of the data

for all possible world states to derive our representation likelihood p(d|w) it can be converted into a representation
P P of the posterior by multiplying with the prior. The repre-

Igr tgr?oerzsf‘ﬁlrllzreglrsctﬁbolc:aorné kll_iior\:\f z\i/rirér:gi'csm';?Zra;é'g?:nsentation of the posterior can then support any inferences
P 9 P we wish to make based on the data.

this case five or more dimensions). Such a complete rep- We consider the world state to be represented by the

resentation would also be unmanageable for a module th?ttjndamental matri¥” and the datal to be represented by

nmeaekc?rs]g']co use the results for further computation ordeusmg” the point correspondences, denotedXbyBayes’ rule

then becomes

Ideally, we would like to evaluate the likelihogdd|w)

To reach an efficient representation of the likelihood,
we will rely on the following observation: If the epipole p(F|X) «x p(X|F)p(F). Q)
in the first image is known, the remaining parameters of
the fundamental matrix (simply rotation in an uncalibrated ~We store the hypotheses for the fundamental matrix in a
setting) are uniquely determined unless all the points fronfwo-dimensional array indexed by epipole in the first im-

the point correspondences and the epipole lie on a con@ge. Our goal is to find the best fundamental matrix hy-
mon conic in the second image_ pOthesiS for each cell of the array and the integral likeli-

hood in each cell. Lef)(e) denote the set of all funda-

T_hqs Itis ”at““"." tq represent the Ilkel|hqod V\.”th AN mental matrices with the epipotein the first image. The
explicit representation indexed by the translation direction

(epipole in the first image), desired output from our approach is

The usefulness of treating the translation and rotation
differently has been understood by many authors and ex-
ploited in different ways, see for example [10, 3, 18, 1].

It is also closely related to the highly popular plane-plus-&nd
parallax approach [11, 14, 21, 23, 13], where one relies fle)= / p(X|F)dF. 3)
on the existence of a dominant homography and solves for FeQ(e)

that in order to guide the search for the translation direcfor all values of the epipole. The latter can be computed
tion. by a Laplace approximation around the former.

Fopl€) = ¢ (o) PXIF) @
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Along the lines of our above motivation, it is assumedwhereo is a scale parameter, which we typically set to
that the likelihoodp(X |F') has a unique narrow peak in one pixel of a CIF image362 x 288), N is the number
Q(e). By assuming that the prigr(F’) is smooth in com-  of point correspondences, afd k£ < 1. We determine
parison to the extent of the peak, the user of the output cathe value oft experimentally in section 6.4. We have also
make the approximation tried the standard way of assuming that the reprojection

errors are conditionally independent given the world con-
p(e|X)o</ P(X|F)p(F)dF =~ p(Fop(e)) f(e). (4) figurat.ion & = 0), dogmatically leading to a product of
FeQ(e) many independent factors, where each factor is related to a
o _ . single point correspondence. However, we have found that
In a similar manner, most inferences that one may wishyjthough this produces sensible peak locations of the like-
to make based on the data has to do with an integral ofingod, it leads to an unrealistically rapid fall-off around
some functiory(F) times the posterior likelihood. Such he jikelihood peak, resembling a delta-function and not a
integrals realistic model of any practical situation.

/ / 9(F)p(F|X)dFde 5)
e JFeQ(e)

can be approximated as 5. HYPOTHESIS GENERATORS

[ g(Fopt(€))p(Fopt(€)) f (e)de The hypothesis generators we use in our experiments

(6) are:
J.p(Fopt(e)) f(e)de e 5-Point (Calibrated)

The advantage is that the inferences can be made outside, 7_pgint (Uncalibrated)
the relative orientation module with any choice of prior
p(F) using onlyF,,;(e), f(e) and easy two-dimensional e 8-Point (Uncalibrated)
integrals.

If this can be done efficiently and reliably, inferences
can be made in an application-dependent manner based one 5-Point+Epipole (Uncalibrated)
the resulting representation, without major alterations to

th fth ter visi Igorithm.
4elcor;c? E.T(OTEU e;wsmn algorithm we use the 5-point method (5pt)[16]. In the uncalibrated
) ror Likelinoo case, we use the 7-point (7pt) method and the 8-point (8pt)

In the simplest case, the prior likelihogdF) is set to ~ method [9].

uniform. In some cases we may have more prior informa- The 3-point+epipole (3pt+e) and 5-point+epipole
tion. For example, if we are calibrating a stereo-head, wd5pt+e) methods are partially data-driven generators. The
typically have approximate knowledge of the location of former was presented in [17]. It uses the point constraints
the epipole and also of the relative rotation. We may alstd the known epipole to restrict the essential matrix to

approximate constraints on the calibration. are then added, leading to two conics that are intersected,

which yields four solutions. This method can be carried
. - out extremely fast in closed form. The latter is related
4.2 Posterior Likelihood to a classical result, which is that given five point corre-
spondences, the epipoles correspond by a fifth-degree Cre-
mona mapping, also discussed in [26]. This method gives
/ (/T Fz)? a unique §o|ution. It can for example _be implemented by
s(z,a’, F)= F2)2+ (Fal 1 (@ F2 1 (@ F)2 (7)  stacking linear con_straln_ts from the pomt correspondences
and the known epipole into an® matrix, subsequently
where the homogeneous coordinates for the points are agxtracting the unique nullvector.
sumed to be normalized such that their last coordinates
are one. It approximates the squared sum of magnitudes
of the smallest perturbation required to bring the image 6 . EXPERIMENTS
point correspondence < z’ into agreement with the
epipolar geometry described by the fundamental matri6.1  Construction of the Likelihood Image
(«'TF2z = 0). This approximation has been found su-

. . . . .To determine the uncertainty of an estimated epipole, we
perior to symmetric epipolar distance and other approxi-

mations of similar computational complexity [27] first computed a quantized posterior likelihood over a
We model our data IIi)keIihood as plexity ' hemisphere of epipoles. The sign of the epipole can only
be determined using cheirality [9], which we do not en-

N N~k force. We mapped the hemisphere onto a>3800 im-
p(X|F) o (H 020 + s(zi, 2, F)™Y) ,  (8) age. In.eac_h cell, we _computeq thg optimal fundamen-
tal matrix with translation direction in the cell. In the

¢ 3-Point+Epipole (Calibrated)

For fully data-driven sampling in the calibrated case,

We use a Sampson approximation (see [9]):

=1
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cases of the partially data-driven methods, we determinis
tically sampled the translation direction over all quantized

- - -3pt+e

translations. In the fully data-driven methods, the transla 0.9 ‘:\‘\ ______ - = =5pt+e||
tion direction was determined by the generated hypothe o8] ~— " TTTT77777cooo- oo o
sis. We sampled the entire epipolar space, or about 700C N - 8pt
cells, in multiple sweeps, using random sets of point cor- . Yo
respondences for each sample. In the partially data-drive 5 |+ “\.\
methods, a small perturbation in the translation was adde 5 *°[«~  "te-l
within each cell to more fully represent possible funda- L L
mental matrices. 03 °.

We explored the likelihood images for both synthetic o2l .
and real data. In the synthetic case, images with knowi o T —— RN
relative orientation were created with a scene volume o ' o

150 200 250 300
Number of sweeps

random points. The image points were then perturbed witl 50 100
Gaussian noise equivalent to one pixel of a CIF image

Finally, outliers were simulated by uniformly scattering

a percentage of the image points in one image. For redfigure 3: Comparison of convergence rates for the vari-
data, we tracked Harris corners, using normalized correladus hypothesis generation methods. Hypothesis genera-
tion for matching. The camera was calibrated in order tation times are not taken into account.

compare calibrated and uncalibrated methods.

6.2.1 Comparison of Partially and Fully Data-Driven
Methods

We investigated how quickly each method convergesto th¢y . compared the methods by examining the rate of con-
likelihood over the entire hemisphere. A straightforwardvergence to the likelihood. Since the uncalibrated meth-
measure of the error in the estimated likelihood is givenyyq'create hypotheses from the space of fundamental ma-
by trices, while the calibrated methods generate hypotheses
from the more restricted space of essential matrices, the

6.2 Convergence of the Likelihood

)

error = /(p(e) —p(e))de,

wherep is the true likelihood ang is the estimated likeli-

hood. Ideally, a full search over the space of fundamentai

matrices would be used to create Since this is infeasi-

ble, we approximated the true likelihood as the maximum
found using all five tested methods in an extremely long

computation. The final image, shown on the top left of
Figure 2, was created with 1000 sweeps, or alioutl0”
samples per method.

uncalibrated methods uncover a greater probability mass.
Because we calibrated the image points, the true solution
is an essential matrix, so the mass uncovered by the uncal-
rated methods may be overestimated.

We sampled with all methods simultaneously and
recorded the errors. Because several methods produce
multiple solutions, it was important to ensure that the
methods had equivalent numbers of samples. For the
3pt+e and 7pt methods, we disambiguated the solutions by
scoring one additional point correspondence and choosing
the hypothesis with the highest single point likelihood. For
the 5pt method, which may produce up to 10 real solutions
representing extra potentially valid solutions such as pla-
nar ambiguities, we stored the hypotheses and computed
the likelihood of one hypothesis per sampling round.

As seen in Figure 3, the fully data-driven uncalibrated
methods explore the greatest probability mass early in the
computation, while the 5pt+e method slowly converges
to the same value. The calibrated methods converge to
a different posterior likelihood, although the fully data-
driven method again converges faster than the partially
data-driven method.

Figure 2: Posterior likelihood images of a scene with side6.3 Estimation of Confidence Intervals

ways translation over 1000 sweeps of the epipolar space. o _
From left to right, top to bottom: true likelihood; 3pt+e Once we have the posterior likelihood, we create confi-
method; Spt+e method; 5pt method; 7pt method; 8ptdence intervals by finding the global maximum in the pos-

method.
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terior likelihood and measuring the fraction of the proba-
bility mass that lies within a certain distance of the max-
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Figure 4. Examples of confidence intervals in an image

sequence with a leftward translation. From left to right Figure 5: Cumulative distribution functions of confidence
and top to bottom, the respective probability masses withinévels for varying values of. Note thatk = 0.5 most
each circled confidence interval are: 0.865, 0.567, 0.204;l0sely matches a uniform random variable.

0.065.

highly peaked likelihood.
imum. That is, we start from a maximal acceptable dis-
tance, which then in turn determines the confidence levelg g Finding Optimal Baseline in an Image
Typically, we used a distance of 5 degrees on the sphere. Sequence
Figure 4 shows examples of confidence intervals in like-
lihood images. The top two images represent cases Witi\s a practical test of inference with our uncertainty repre-
many inlier point correspondences. The bottom leftimagesentation, we aim to find a pair of frames in an image se-
represents a case with relatively few correspondences anflience that results in the best possible 3-D reconstruction
low stability. The bottom rightimage represents a case thagf a scene. To accomplish this, we search for an optimal
has a critically small number of correspondences. Howhaseline between camera positions, such that we have a
ever, these deficiencies are apparent in the representatidarge translation required for accurate reconstruction while
due to the small probability mass within the confidencestill maintaining a reasonable number of inlier point corre-
intervals. spondences. Obtaining a confidence interval between dif-
ferent pairs of images allows us to choose the pair that has

e . the greatest mass fraction in a fixed-size confidence inter-
6.4 Verification of Confidence Interval val, i.e. leads to the greatest confidence in capturing the

If we construct confidence intervals and collect statisticstmade‘)”o_gIe o within aflx_(:g angle. In ourdexpe_rlme_r:jt, we
on the confidence level needed to capture the true epipolg%.",Se Iat\'” €o lsiquetncti with a car\yvera un _grgo:jnglls:hevyays
this confidence level should ideally be a uniformily dis- ransiation refative fo the scene. We considered alt the Im-

tributed random variable. To explore the sensitivity of ourd9¢ pairs that include the first image (frame 0), leaving the

confidence intervals to discrepencies between the assuméﬁcond image frame for selection. Figure 6 shows the re-

data model and the actual data model, we use synthet ulting fra_ctions of the probability mass fpr each fr_ame.
data along with our cost function, and measure the devi. he peak is located at a reasonable baseline spanning four

ation from uniform distribution. A synthetic scene with Lrarfn?lg th:el sharp declm;a Ibnl mass sfterffr_alme ! IS ;:aused
30% outliers and a known epipole was created. y talling below an acceptable humber ot inlier point cor-

A 100x100 likelihood image was created using 10 respondences.
sweeps of the 5pt+e method, and the probability mass re-
quired to capture the true epipole was recorded. This was
repeated 500 times, and the cumulative distribution func- 7 . CONCLUSION
tion of the mass fractions was plotted. A sublinear cdf
indicates overconfidence, while a superlinear cdf indicategve have presented a framework for epipolar geometry es-
underconfidence. timation that draws upon both multiple view geometry and
We found the best value fdr from Equation (8) to be statistics. The central theme is to derive a representation
approximatelyl /2. As seen in Figure 5, this achieves a that faithfully represents the posterior likelihood globally.
balance in the confidence estimates, while= 1 leads This is accomplished with a representation parameterized
to underconfidence and = 0 to overconfidence, with a by epipole location in the first image. We have explored
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ABSTRACT:

Fundamental tasks in computer vision include determining the position, orientation and trajectory of a moving camera relative to an
observed object or scene. Many such visual tracking algorithms have been proposed in the computer vision, artificial intelligence
and robotics literature over the past 30 years. Predominantly, these remain un-validated since the ground-truth camera positions and
orientations at each frame in a video sequence are not available for comparison with the outputs of the proposed vision systems.

A method is presented for generating real visual test data with complete underlying ground-truth. The method enables the production
of long video sequences, filmed along complicated six degree of freedom trajectories, featuring a variety of objects, in a variety of
different visibility conditions, for which complete ground-truth data is known including the camera position and orientation at every
image frame, intrinsic camera calibration data, a lens distortion model and models of the viewed objects. We also present a means of
estimating the errors in the ground-truth data and plot these errors for various experiments with synthetic data. Real video sequences
and associated ground-truth data will be made available to the public as part of a web based library of data sets.

1. INTRODUCTION

An important and prolific area of computer vision research is
the development of visual tracking and pose estimation
algorithms. Typically these fit a model to features extracted
from an observed image of an object to recover camera pose,
track the position and orientation of a moving camera relative to
an observed object or track the trajectory of a moving object
relative to a camera.

Clearly, proper validation of such algorithms necessitates test
images and video sequences with known ground-truth data,
including camera positions and orientations relative to the
observed scene at each frame, which can be compared to the
outputs of proposed algorithms in order to compute errors.
Surprisingly, very few such data sets or methodologies for
creating them are discussed in the literature, with reported
vision systems often validated in ad hoc ways.

Many papers attempt to demonstrate the accuracy of tracking
algorithms by superimposing, over the observed image, a
projection of the tracked object based on the positions and
orientations output by the algorithm. In fact it can be shown
(Stolkin 2004) that even very close 2D visual matches of this
kind can result from significantly erroneous 3D tracked
positions. One reason for this is that certain combinations of
small rotations and translations, either of cameras or observed
objects in 3D space, often make little difference to the resulting
2D images. This is especially true for objects with limited
features and simple geometry. Such errors can only be properly
identified and quantified by means of test images with
accompanying complete 3D ground-truth.

It is relatively simple to construct artificial image sequences,
with pre-programmed ground-truth, using commonly available
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graphics software (e.g. POV-Ray for windows) and this is also
common in the literature. However, although testing computer
vision algorithms on synthetic scenes allows comparison of
performance, it gives only a limited idea of how the algorithms
will perform on real scenes. Real cameras and real visibility
conditions result in many kinds of noise and image degradation,
far more complicated than Gaussian noise or “salt and pepper”
speckling and it is not trivial or obvious how to realistically
synthesise real world noise in an artificial image (Rokita, 1997,
Kaneda, 1991). This becomes even more difficult when the
scene is not viewed through clear air but through mist, smoke or
turbid water. Artificial scenes do not completely reproduce the
detailed variation of objects, the multitude of complex lighting
conditions and modes of image degradation encountered in the
real world. Vision and image processing algorithms often seem
to perform much better on artificial (or artificially degraded)
images than on real images. The only true test of computer
vision algorithms remains their performance on real data.

To this end, several researchers have attempted to combine real
image data with some knowledge of ground-truth. Otte, 1994,
describes the use of a robot arm to translate a camera at known
speeds, generating real image sequences for the assessment of
optical flow algorithms. The measured ground-truth data is
limited to known optic flow fields rather than explicit camera
positions and the camera is only translated. Rotational camera
motion is not addressed. McCane, 2001, also describes image
sequences with known ground-truth motion fields. The work is
limited to simple 2D scenes containing planar polyhedral
objects against a flat background. The technique involves
laborious hand-labelling of features in each image and so only
very short sequences are usable. Wunsch, 1996, uses a robot
arm to position a camera in known poses relative to an observed
object. Similarly, Sim, 1999, generates individual images from
known camera positions using a camera mounted on a gantry



robot. In the work of both Wunsch and Sim, ground-truth
positions are only measured for individual still images as
opposed to video sequences. Both authors appear to obtain
camera positions from the robot controller. It is not clear if or
how the positions of the camera (optical centre) were measured
relative to the robot end-effector. Agapito, 2001, generates
ground-truth image sequences using their “Yorick™ stereo
head/eye platform. The work is limited to providing rotational
motion with only two degrees of freedom. Although data for
angles of elevation and pan can be extracted from the motor
encoders of the platform, these are not in relationship to a
particular observed object. The translational position of the
camera remains unknown. Maimone, 1996, discusses various
approaches for quantifying the performance of stereo vision
algorithms, including the use of both synthetic images and real
images with various kinds of known ground-truth. Maimone
does mention the use of an image of a calibration target to
derive ground-truth for a corresponding image of a visually
interesting scene, filmed from an identical camera position.
However, the techniques are limited to the acquisition of
individual, still images from fixed camera positions. The
additional problems, of generating ground-truth for extended
video sequences, filmed from a moving camera, are not
addressed.

In contrast, our method enables the production of long video
sequences, filmed along a six degree of freedom trajectory,
featuring a variety of objects, in a variety of different visibility
conditions, for which complete ground-truth data is known
including the camera position and orientation at every image
frame, intrinsic camera calibration data, a lens distortion model
and models of the viewed objects.

2. METHOD
2.1 Apparatus and procedure

An industrial robot arm (six degree of freedom Unimation
PUMA 560) is used to move a digital cam-corder JVC GR-
DV2000) along a highly repeatable trajectory. “Test
sequences”, (featuring various objects of interest in various
different visibility and lighting conditions), and ‘“calibration
sequences” (featuring planar calibration targets in good
visibility) are filmed along identical trajectories (figures 1, 2).

Figure 1. “Test sequence”-camera views a model oil-rig object
in poor visibility.
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Figure 2. “Calibration sequence”-camera views calibration
targets in good visibility.

A complete camera model, lens distortion model, and camera
position and orientation can be extracted from the calibration
sequence for every frame, by making use of the relationship
between known world co-ordinates and measured image co-
ordinates of calibration features. This information is used to
provide ground-truth for chronologically corresponding frames
in the visually interesting test sequences. Objects to be observed
are measured, modeled and located precisely in the co-ordinate
system of one of the calibration targets.

For those researchers interested in vision in poor visibility
conditions (e.g. Stolkin 2000) dry ice fog can be used during
the “test” sequences (figure 1) in addition to various lighting
conditions (e.g. fixed lighting or spot-lights mounted on and
moving with the camera).

Note, it is not feasible to extract camera positions from the
robot control system since the position of the camera relative to
the terminal link of the robot remains unknown; industrial
robots, while highly repeatable, are not accurate;
chronologically matching a series of robot positions to a series
of images may be problematic.

2.2 Synchronisation

The “calibration” and “test” sequences are synchronised by
beginning each camera motion with a view of an extra
“synchronisation spot” feature (a white circular spot on black
background). A frame from each sequence is found such that
the “synchronisation spot” matches well when the two frames
are superimposed. Thus the n'™ frame from the matching frame
in the test sequence is taken to have the same camera position as
that measured for the n' frame from the matching frame in the
calibration sequence. The two sequences can only be
synchronised to the nearest image frame (i.e. a worst case error
of +0.02 seconds at 25 frames per second). There are two ways
of minimizing this error. Firstly, the camera is moved slowly so
that temporal errors result in very small spatial errors. Secondly,
many examples of each sequence are filmed, increasing the
probability of finding a pair of sequences that match well
(correct to the nearest pixel). If ten examples of each sequence
are filmed, then the expected error is reduced by a factor of 100.



2.3 Feature extraction and labelling

The calibration targets are black planes containing square grids
of white circular spots. The planes are arranged so that at least
one is always in view and so that they are not co-planar. The
positions of spots in images are determined by detecting the
spots as “blobs” and then computing the blob centroid. A small
number (at least 4) of spots in each of a few images scattered
through the video sequence are then hand-labeled with their
corresponding target plane co-ordinates. The remaining spots in
all images are labeled by an automated process. The initial four
labels are used to estimate the homography mapping between
the target plane and the image plane. This homography is then
used to project all possible target spots into the image plane.
Any detected spots in the image are then assigned the labels of
the closest matching projected spots. Spots in chronologically
adjacent images are now labeled by assigning them the labels of
the nearest spots from the previous (already labeled) image.
These two processes, of projection and propagation, are iterated
backwards and forwards over the entire image sequence until no
new spot labels are found.

2.4 Camera calibration and position measurement

Our calibration method is adapted from that of Zhang, 1998,
which describes how to calibrate a camera using a few images
of a planar calibration target. Related calibration work includes
Tsai, 1987. The following is a condensed summary of our
implementation of these ideas.

2.4.1 Homography between an image and a calibration
target: Since the calibration targets are planar, the mapping
between the (homogeneous) target co-ordinates of calibration

features, X, =[X . Y 1]T, and their corresponding

(homogeneous) image co-ordinates, X, :[u v 1]T, must

form a homography, expressible as a 3 X 3 matrix:

x; =HX, = [hl h, h3]Xt )
Thus each calibration feature, whose position in an image is
known and whose corresponding target co-ordinates have been
identified, provides two constraints on the homography. A large
number of such feature correspondences provides a large
number of simultaneous equations:

Wil W), Wl X, X, X,
Wiy WV, wy, |=H|Y Y, Y, 2)
w, w, w, 1 . . 1

A least squares fit homography is then found using singular
value decomposition.

2.4.2 Constraints on the camera calibration parameters:
The mapping between the target and image planes must also be
defined by the intrinsic and extrinsic camera calibration
parameters of the camera:

x, =HX, = CEX,

3)
where C is the “intrinsic” or “calibration matrix’:
fku 0 MO
C = 0 fkv VO
0 0 1
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(fis focal length, k, and k, are pixels per unit length in the u and
v directions, (ug, Vo) are the co-ordinates of the principal point,
pixel array assumed to be square) and E is the “extrinsics
matrix” defining the position and orientation of the camera
(relative  to  the target co-ordinate  system), i.e.

E= [rl I T], where r and T denote rotation and
translation vectors. Note that only two rotation vectors (not
three) are needed since the calibration target plane is defined to
lie at Z = 0 in the target co-ordinate system. Hence:
H= [hl h2 h}]:C[rl l.2 T] (4)
Since the column vectors of a rotation matrix are always
mutually orthonormal, we have:

r'r,=0 )
r'r =rr, ©)
_ -l
Since T = Ch, these become:
T(~-T-ly
h;C”"Ch,=0 7
and h/C"C'h, =h}C"C'h, @)

Thus one homography provides two constraints on the intrinsic
parameters. Ideally, many homographies (from multiple images
of calibration targets) are used and a least squares fit solution
for the intrinsic parameters is found using singular value
decomposition.

Once the intrinsic parameters have been found using a few
different views of a calibration target, the extrinsic parameters
can be extracted from any other single homography, i.e. the
camera position and orientation can be extracted for any single
image frame provided that it features several spots from at least
one target.

2.4.3 Locating targets relative to each other: We use multiple
calibration targets to ensure that at least one target is always in
view during complicated (six degree-of-freedom) camera
trajectories. Provided that at least one target is visible to the
camera at each frame, the position of the camera can be
computed by choosing one target to hold the world co-ordinate
system and knowing the transformations which relate this target
to the others. The relationship between any two targets is
determined from images which feature both targets together, by
determining the homography which maps between the co-
ordinate systems of each target. For two targets, A and B:

x,=H X, =H,X, ©)

where X, and X are the positions of a single point in the

respective co-ordinate system of each target. Thus:

(HA)ilHBXB

X, = (HA)ilxi (10)

2.4.4 Modeling lens distortion: Lens distortion is modelled as
a radial shift of the undistorted pixel location (u, v) to the
distorted pixel location (g, 7), such that:

ﬁ=u+(u—u0)(klr2+k2r4) (11
and \7=V+(v—vo)(klr2+k2r4) 12)
where r’ = (u —u, )2 + (V—v0 )2



2.4.5 Refining parameter measurements with non-linear
optimization: In practice, all important parameter
measurements (camera intrinsics, lens distortion, target to target
transformations, camera positions), which are initially extracted
using the geometrical and analytical principles outlined above,
can be further improved using non-linear optimisation. An error
function is minimised, consisting of the sum of the squared
distances (in pixels) between the observed image locations of
calibration features and the locations predicted given the current
estimate of the parameters being refined. This results in a
maximum likelihood estimate for all parameters.

Firstly a small set (about 20) of images are used to compute
camera intrinsic parameters, lens distortion parameters, camera
position and orientation for each image (of the small set) and
the transformations between the co-ordinate systems of each
target. These parameters are then mutually refined over all
views of all targets present in all images of the set, by
minimising the following error function:
2

i i‘ Ximag('n. - ﬁimage” (C’kl’k2’ Rr’Tr’ergetN 1‘ (13)

target =1 spot s=1

Where, for m points (spot centres) extracted from n target
views, X. is the observed image in pixelated camera co-

image,
ordinates of the world co-ordinate target point X , and
target

X is the expected image of that point given the current

image,,
estimates of the camera parameters (C,kl,kZ,Rt,Tr). Note

that the values of the co-ordinates of Xtarg are also dependent

et,,

on the current estimates of target-to-target transformations and
these transformations are also being iteratively refined.

Secondly, using the refined values for intrinsics, lens distortion
parameters and target-to-target transformations, the camera
position and orientation is computed for a single image taken
from the middle of the “calibration sequence”, again using
analytical and geometrical principles. Keeping all other
parameters constant, the six-degrees of freedom of this camera
location are now non-linearly optimized, minimizing the error
between the observed calibration feature locations and those
predicted given the current estimate of the camera location and
the fixed values (previously refined) of all other parameters.

Lastly, the camera position for the above single image is used as
an initial estimate for the camera positions in chronologically
adjacent images (previous and subsequent images) in the video
sequence. These positions are then themselves optimized, the
refined camera positions then being propagated as initial
estimates for successive frames, and so on throughout the entire
video sequence, resulting in optimized camera positions for
every image frame along the entire camera trajectory.

3. RESULTS
3.1 Constructed data sets

We have filmed video sequences of around 1000 frames (at 25
frames per second) along a complicated six degree-of-freedom
camera trajectory. Figure 3 shows the camera position at each
frame, as calculated from the calibration sequence. The
trajectory is illustrated in relation to the spots of the three
calibration targets (30mm spacing between spots).
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Figure 3. The computed trajectory for a six-degree of freedom
of motion video sequence.

The sequences feature various different known (measured and
modelled) objects (figure 4) in various different visibility and
lighting conditions as well as a corresponding calibration
sequence. Analysis of the calibration sequence has yielded a
complete camera model, lens distortion model and a camera
position and orientation for every frame in each of these
sequences.

Figure 4. Two of the objects filmed in the video sequences,
block and model oil-rig.

3.2 Smoothness of trajectory

One indicator of accuracy is the smoothness of the measured
trajectory. Figure 3 is a useful visual representation of the
trajectory and figures 5 and 6 are plots of the translational and
rotational camera co-ordinates at each frame. Points A, B, C, D
are corresponding way mark points between figures 3, 5 and 6.

For about the first 40 frames, the camera is stationary at
point A. It will be noticed that small sections of the trajectory
appear somewhat broken and erratic, approximately frames 40 —
160 and 880 — 910. These ranges correspond to the beginning
and end of the trajectory during which the camera is moved
from (and back towards) a position fixated on the
“synchronization spot” (see section 2.2) at point A. During
these periods, comparatively few calibration features are in the
field of view. These sections of the video sequence do not
correspond to visually interesting portions of the image
sequence and are not used for testing vision algorithms. They
are included only for synchronization. The remainder of the
measured trajectory is extremely smooth, implying a high
degree of precision. The robot is old, and its dynamic



performance less than perfect, so the disturbance just after
motion is initiated (shortly after point A) is probably due to the
inertia of the system. Second and third peaks of decaying
magnitude at exactly 20 and 40 frames later suggest that they
have a mechanical origin.

400

200

100

600 900

300 600 900

Figures 5 & 6. Top graph shows translational components of
camera motion along x, y and z axes. Vertical scale in mm.
Bottom graph shows rotational components of camera motion
about X, y and z axes. Vertical scale in radians. For both graphs,
the horizontal scale is image frame number.

3.3 Robot repeatability

In order to assess repeatability, the robot was moved along a
varied, six-degree of freedom motion that included pauses at
three different positions during the motion. Several video
sequences were filmed from the robot-mounted camera while
moving in this fashion. Images from different sequences, filmed
from the same pause positions, were compared. Superimposing
the images reveals an error of better than + one pixel. This
implies that errors in image repeatability due to robot error
approach the scale of the noise associated with the camera itself.
Our robot is approximately twenty years old. Modern machines
should produce even smaller errors.

3.4 Accuracy of scene reconstruction

In order to assess accuracy, the image positions of calibration
features were reconstructed by projecting their known world co-
ordinate positions through the measured camera model placed at
the measured camera positions. Comparing these predicted
image feature positions with those observed in the real
calibration sequence yielded an rms error of 0.6 pixels per
calibration feature (spot).

When some of the observed objects have been reconstructed in
the same way, the errors are worse. Figure 7 shows an image
from a sequence featuring a white block object. The measured
camera position for the image frame has been used to project a
predicted image (shown as a wire frame model) and this
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predicted image has been superimposed over the real image.
This helps illustrate the errors involved (in this case + 3 pixels
discrepancy in block edges). This disparity in error magnitude
(compared to 0.6 pixels above) may be due to over-fitting of the
camera model to features in the calibration target planes and
under-fitting to points outside those planes.

Figure 7. An image from a sequence featuring a block object.
The superimposed wire frame image corresponds to the
predicted image given the measured camera co-ordinates.

3.5 Accuracy of camera pose measurement

In order to estimate the potential overall accuracy of measured
camera positions, we have used synthetic calibration data.
Although, in general, synthetic images do not reproduce the
noise inherent in real images, calibration sequences are filmed
in highly controlled conditions which are more reasonably
approximated by synthetic images. Graphics software (POV-
Ray for windows) was used to generate computer models of
calibration targets. A series of synthetic images were then
rendered which would correspond to those generated by a
camera viewing the targets from various positions. These
images were fed into the calibration scheme. Ground-truth as
measured by our calibration scheme was then compared with
the pre-programmed synthetic ground-truth in order to quantify
accuracy. For simplicity, we have used a synthetic camera array
of 1000 by 1000 pixels-somewhat better than current typical
real digital video resolution but far worse than typical real
single image resolution. Over a set of 6 images filmed from
several different ranges, but all featuring views of three
approximately orthogonal calibration targets (see second
paragraph of section 4), the error in measured principal point
position was 1. 76 pixels and the error in measured focal length
was 0.06%. The average error in measured camera position was
1.38mm and 0.024 degrees.
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Figure 8. Variation in translational camera position error with
range from calibration targets.
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Figures 9. Variation in camera orientation error with range from
calibration targets.

Figures 8 and 9 plot the variation of error with distance of the
camera from the calibration target origin.

4. SUGGESTED IMPROVEMENTS

The problem, outlined in section 3.4, of over-fitting the camera
model to points lying in the calibration target planes should be
avoided in future work by using calibration images filmed at a
variety of different ranges from the calibration targets.

Although it should be possible to determine the position of a
calibrated camera given a view of a single calibration target
(Zhang, 1998), in practice various small coupled translations
and rotations of the camera can result in very similar views,
causing measurement uncertainty. These errors can be
constrained by ensuring that, throughout the motion of the
camera, all three targets, positioned approximately orthogonally
to each other, are always in view. In our original experiments
with real video sequences, only one or two targets were viewed
in most images and so our camera position accuracies are worse
than can be achieved. Future researchers should ensure that the
camera can always view three, approximately orthogonal,
calibration targets in every image.

It is possible to further automate the labeling of calibration
spots. By making a specific point, or points, on each target a
different colour, it may be possible to eliminate the need to
hand-label a small number of spots in each video sequence.

Viewing the “‘synchronization spot” after the cam-era has
already started moving would eliminate the mechanical
vibration problems of the step response noted at the start of the
robot’s motion.

The synchronisation problem (see section 2.2), that two
sequences can only be synchronised to the nearest image frame
(i.e. worst case error of £0.02 seconds at 25 frames per second),
might be eliminated by triggering the camera externally with a
signal from the robot controller such that video sequences
started at a specific location in the trajectory.

Note that test sequences can be filmed which feature virtually
any kind of object. Even deforming or moving objects could
conceivably be used although measuring ground-truth for the
shapes and positions of such objects would pose additional
challenges. Specifically, the use of objects with known textures
might benefit researchers with an interest in surface
reconstruction or optic flow. With appropriate equipment, it
should also be possible to create real underwater sequences
using our technique.
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5. CONCLUSION

The field of computer vision sees the frequent publication of
many novel algorithms, with comparatively little emphasis
placed on their validation and comparison. If vision researchers
are to conform to the rigorous standards of measurement, taken
for granted in other scientific disciplines, it is important that our
community evolve methods by which the performance of our
techniques can be systematically evaluated using real data. Our
method provides an important tool which enables the accuracy
of many proposed vision algorithms, for registration, tracking
and navigation, to be explicitly quantified.
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ABSTRACT:

We present a real-time localization system based on monocular vision and natural landmarks. In a learning step, we record a reference
video sequence and we use a structure from motion algorithm to build a model of the environment. Then in the localization step, we use
this model to establish correspondences between the 3D model and 2D points detected in the current image. These correspondences
allow us to compute the current camera localization in real-time. The main topic of this paper is the performance evaluation of the
whole system. Four aspects of performance are considered : versatility, accuracy, robustness and speed.

1 INTRODUCTION

In this paper we evaluate the performance of an algorithm de-
signed to compute the localization of a camera in real-time. Only
one camera and natural landmarks are required. In a first step, we
record a video sequence along a trajectory. Then this sequence
goes through a structure from motion algorithm to compute a
sparse 3D model of the environment. When this model has been
computed, we can use it to compute the localization of the cam-
era in real-time as long as the camera stays in the neighborhood
of the reference trajectory. We have developed this system for
outdoor autonomous navigation of a robotic vehicle, but other
applications such as indoor robotics or augmented reality can use
the same localization system. The main topic of the paper is the
performance evaluation of the localization system. The algorithm
is only briefly presented here, more details can be found in (Royer
et al., 2005).

As soon as a map of the environment is available, it is possi-
ble to compute a localization for the camera with reference to
the map. Several approaches for building the map are possible.
Simultaneous Localization And Mapping (SLAM) is very attrac-
tive because localization is possible as soon as the system starts
working. But map building is the most computer intensive part,
so doing this with monocular vision in real-time is difficult. How-
ever, monocular SLAM has been achieved in real-time (Davison,
2003). But the main drawback is that it’s not possible to handle
a large number of landmarks in the database. Computing a local-
ization from the video flow can also be done by ego-motion esti-
mation or visual odometry (Nistér et al., 2004). But this method
is subject to error accumulation because there is no global op-
timization and the localization accuracy decreases with the dis-
tance covered.

Another possible approach is to build a map first and use this
map to localize the camera. The main advantage is that there is
no real-time constraint on map building. So algorithms providing
more accuracy can be used. This approach has been used several
times for robot localization. Cobzas et al. (2003) use a camera
mounted on a rotating platform and a laser range finder to build
a panoramic image enhanced with 3D data of the environment.
After the 3D model is built, a single 2D image is enough to com-
pute the localization of the camera. Kidono et al. (2002) also use
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a map building step before the localization. Map building con-
sists in recording the video sequence along a reference trajectory,
then localization is possible in the neighborhood of this trajec-
tory as in our method. It works under the assumption that the
ground is planar and the sensors used are a stereo vision rig and
an odometer. In our case, the ground can be irregular and we use
only one calibrated camera. Camera calibration is important in
order to use fish eye lenses with up to 130° field of view. Map
building is done with a structure from motion algorithm.

In section 2 we briefly present the algorithms we use to build the
map from the reference video sequence, and how this map is used
for the localization process. In section 3 we show some localiza-
tion results and we discuss the performance of the system. Four
aspects of performance are considered : versatility, accuracy, ro-
bustness and speed. The results come from experiments carried
out indoors and outdoors. The results provided by the vision al-
gorithm are compared to the ground truth whenever possible.

2 ALGORITHM
2.1 Map building

Every step in the reconstruction as well as the localization re-
lies on image matching. Interest points are detected in each im-
age with Harris corner detector (Harris and Stephens, 1988). For
each interest point in image 1, we select some candidate corre-
sponding points in a rectangular search region in image 2. Then
a Zero Normalized Cross Correlation score is computed between
their neighborhoods, and the pairs with the best scores are kept to
provide a list of corresponding point pairs between the two im-
ages. This matching method is sufficient when the camera doesn’t
rotate much around the optical axis which is the case when the
camera is mounted on a wheeled robot. Matching methods with
rotational invariance might be used depending on the application
but they would require more computing power.

The goal of the reconstruction is to obtain the position of a subset
of the cameras in the reference sequence as well as a set of land-
marks and their 3D location in a global coordinate system. The
structure from motion problem has been studied for several years
and multiple algorithms have been proposed depending on the as-
sumptions we can make (Hartley and Zisserman, 2000). For our
experiments, the camera was calibrated using a planar calibration



pattern (Lavest et al., 1998). Camera calibration is important be-
cause the wide angle lens we use has a strong radial distortion.
With a calibrated camera, the structure from motion algorithm is
more robust and the accuracy of the reconstruction is increased.
In our robotic application, the motion is mostly along the optical
axis of the camera. Point triangulation must be done with small
angles, which increases the difficulty of obtaining an accurate 3D
reconstruction.

In the first step of the reconstruction, we extract a set of key
frames from the reference sequence. Then we compute camera
motion between key frames. Additionally, the interest points are
reconstructed in 3D. These points will be the landmarks used for
the localization process.

2.1.1 Key frame selection If there is not enough camera mo-
tion between two frames, the computation of the epipolar geom-
etry is an ill conditioned problem. So we select images so that
there is as much camera motion as possible between key frames
while still being able to match the images. The first image of the
sequence is always selected as the first key frame I;. The sec-
ond key frame I is chosen as far as possible from I; but with at
least M common interest points between I; and /. When key
frames I ... I, are chosen, we select I,,+1 (as far as possible
from I,,) so that there is at least M interest points in common be-
tween [,41 and [,, and at least N common points between I, +1
and I,,—1. In our experiments we detect 1500 interest points per
frame and we choose M = 400 and N = 300.

2.1.2 Camera motion computation For the first three key
frames, the computation of the camera motion is done with the
method given by Nistér (2003) for three views. It involves com-
puting the essential matrix between the first and last images of
the triplet using a sample of 5 point correspondences. There are
at most 10 solutions for . Each matrix E gives 4 solutions
for camera motion. The solutions for which at least one of the
5 points is not reconstructed in front of both cameras are dis-
carded. Then the pose of the remaining camera is computed with
3 out of the 5 points in the sample. This process is done with
a RANSAC (Fischler and Bolles, 1981) approach : each 5 point
sample produces a number of hypothesis for the 3 cameras. The
best one is chosen by computing the reprojection error over the
3 views for all the matched interest points and keeping the one
with the higher number of inlier matches. We need an algorithm
to compute the pose of the second camera. With a calibrated cam-
era, three 3D points whose projections in the image are known are
enough to compute the pose of the camera. Several methods are
compared by Haralick et al. (1994). We chose Grunert’s method
with a RANSAC approach.

For the next image triplets, we use a different method for com-
puting camera motion. Assume we know the location of cameras
(' through Cn, we can compute camera C'n+1 by using the lo-
cation of cameras C'y—1 and C'y and point correspondences over
the image triplet (N — 1, N, N +1). We match a set of points X’
whose projections are known in each image of the triplet. From
the projections in images N — 1 and /N, we can compute the
3D coordinates of point X*. Then from the set of X and their
projections in image N + 1, we use Grunert’s calibrated pose
estimation algorithm to compute the location of camera C'n 1.
In addition the 3D locations of the reconstructed interest points
are stored because they will be the landmarks used for the local-
ization process. The advantage of this iterative pose estimation
process is that it can deal with virtually planar scenes. After the
pose computation, a second matching step is done with the epipo-
lar constraint based on the pose that has just been computed. This
second matching step allows to increase the number of correctly
reconstructed 3D points by about 20 %.
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2.1.3 Hierarchical bundle adjustment The computation of
camera C'y depends on the results of the previous cameras and er-
rors can build up over the sequence. In order to correct this prob-
lem, we use a bundle adjustment which provides a better solution.
The bundle adjustment is a Levenberg-Marquardt minimization
of the cost function f(CF,---,Cn, X", -+, X™) where C
are the external parameters of camera 4, and X7 are the world
coordinates of point j. For this minimization, the radial distor-
sion of the 2D point coordinates is corrected beforehand. The
cost function is the sum of the reprojection errors of all the inlier
reprojections in all the images :

N M
f(Cé7"'7Cé‘V7X17"'>X]M):Z Z d2(mZ>P'LX])

i=1 j=1,j€J;

where d? (:cf, P,z%) is the squared euclidian distance between
P; X7 the projection of point X7 by camera 4, and mf is the cor-
responding detected point. P; is the 3 X 4 projection matrix built
from the parameters values in C; and the known internal param-
eters of the camera. And J; is the set of points whose reprojec-
tion error in image ¢ is less than 2 pixels at the beginning of the
minimization. After a few iteration steps, J; is computed again
and more minimization iterations are done. This inlier selection
process is repeated as long as the number of inliers increases.

Computing all the camera locations and use the bundle adjust-
ment only once on the whole sequence could cause problems
because increasing errors could produce an initial solution too
far from the optimal one for the bundle adjustment to converge.
Thus it is necessary to use the bundle adjustment throughout the
reconstruction of the sequence. So we use the adjustment hier-
archically (Hartley and Zisserman, 2000). A large sequence is
divided into two parts with an overlap of two frames in order to
be able to merge the sequence. Each subsequence is recursively
divided in the same way until each final subsequence contains
only three images. Each image triplet is processed as described
in section2.1.2. After each triplet has been computed we run a
bundle adjustment over its three frames. Then we merge small
subsequences into larger subsequences and we use a bundle ad-
justment after each merging operation. In order to merge two
subsequences, we compute a best-fit rigid transformation so that
the first two cameras of the second subsequence are transformed
into the last two cameras of the first subsequence. Merging is
done until the whole sequence has been reconstructed. The re-
construction ends with a global bundle adjustment. The number
of points used in the bundle adjustment is on the order of several
thousands.

2.2 Real-time localization

The output of the learning process is a 3D reconstruction of the
scene : we have the pose of the camera for each key frame and
a set of 3D points associated with their 2D positions in the key
frames. At the start of the localization process, we have no as-
sumption on the vehicle localization. So we need to compare the
current image to every key frame to find the best match. This
is done by matching interest points between the two images and
computing a camera pose with RANSAC. The pose obtained with
the higher number of inliers is a good estimation of the camera
pose for the first image. This step requires a few seconds but is
needed only at the start. After this step, we always have an ap-
proximate pose for the camera, so we only need to update the
pose and this can be done much faster.

The current image is noted I. First we assume that the camera
movement between two successive frames is small. So an ap-
proximate camera pose (we note the associated camera matrix



Py) for image I is the same as the pose computed for the pre-
ceding image. Based on Py we select the closest key frame I},
in the sense of shortest euclidian distance between the camera
centers. Ij gives us a set of interest points Ay, reconstructed in
3D. We detect interest points in I and we match them with Ay.
To do that, for each point in Ay, we compute a correlation score
with all the interest points detected in I which are in the search
region. For each interest point in Ay we know a 3D position,
so with Py we can compute an expected position of this point in
I. In the matching process the search region is centered around
the expected position and its size is small (20 x 12 pixels). Af-
ter this matching is done, we have a set of 2D points in image I
matched with 2D points in image I, which are themselves linked
to a 3D point obtained during the reconstruction process. With
these 3D/2D matches a better pose is computed using Grunert’s
method through RANSAC to reject outliers. This gives us the
camera matrix P; for I. Then the pose is refined using the iter-
ative method proposed by Aragjo et al. (1998) with some modi-
fications in order to deal with outliers. This is a minimization of
the reprojection error for all the points using Newton’s method.
At each iteration we solve the linear system JJ = e in order to
compute a vector of corrections § to be subtracted from the pose
parameters. e is the error vector formed with the reprojection
error of each point in « and y. J is the Jacobian matrix of the
error. In our implementation, the points used in the minimization
process are computed at each iteration. We keep only the points
whose reprojection error is less than 2 pixels. As the pose con-
verges towards the optimal pose, some inliers can become outliers
and conversely. Usually, less than five iterations are enough.

3 PERFORMANCE EVALUATION
3.1 Versatility

This localization system was used with several cameras in differ-
ent kind of environments. We used normal and fish eye lenses
with a field of view ranging from 50° to 130°. The localiza-
tion system is performing well both indoors and outdoors with
changing weather conditions (cloudy, sunny, or with snow on the
ground) with a single learning sequence. According to the envi-
ronment we used different methods to evaluate the accuracy and
the robustness of the algorithm. The results of these experiments
are detailed in the following paragraphs.

3.2 Accuracy

3.2.1 Indoor experiments To evaluate the accuracy of the lo-
calization we used a table where we could measure the position
of the camera with a 1 millimeter accuracy ina 1.2 m x 1.0 m
rectangle. We first recorded a reference video sequence on the
left side of the table. The trajectory was a 1.2 m long straight
line oriented along the optical axis of the camera (Z). Figure 1
illustrates the setup with two images taken on each side of the lo-
calization area (1 m apart). Another pair of such images is present
on Figure 9. Most of the objects visible were along the wall of
the room which was about 3.5 m in front of the localization area.
There were 13 key frames and we built a 3D reconstruction from
these images. Then we moved the camera by 10 cm increments in
X or Z in the localization area in order to cover the whole rect-
angle. For each position we ran the localization algorithm and
compared the position given by the vision algorithm to the true
position measured on the table. This gave us 131 measurements:
the position error e;,; was made for X = 0.1¢ and Z = 0.1j
for each (4,5) € {0..11} x {0..10}. For each lateral deviation
(X = constant) we computed the average value of the error
and the standard deviation. The result is shown on Figure 2. As
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Localization area

X

I'm
Reference sequence

Figure 1: Setup for the indoor experiment

Figure 2: Localization error for a given lateral deviation (average
value and standard deviation)

long as we stay on the reference trajectory, the localization error
is only a few millimeters. The order of magnitude of the error
depends on the distance of the observed 3D points. The outdoor
experiments show a ten fold increase in localization error because
the objects observed can be at 30 m rather than 3 m.

We also made an experiment to evaluate the rotational accuracy.
The camera was mounted on a rotating platform. The angle of the
platform can be read with about £0.1° accuracy. We compared
the orientation o provided by the vision algorithm to the angle
ap given by the platform. We used the same fish eye lens as
in the previous experiment, providing a 130° field of view (in
the diagonal) and we made a measurement for each angle from
ap = —94° to ap = 94° with a 2° increment. The reference
trajectory was a straight line (1 m long) oriented along the optical
axis (which was in the 0° direction). The result of this experiment
appears on Figure 3. The algorithm was not able to provide the
pose of the camera when the angle reached 95° because there
were not enough point correspondences. The angular accuracy
measured with this setup is about +0.1°, which is about the same
as what can be read on the platform. The algorithm provides a
useful angular information for a deviation up to 94° on either
side with this camera. Of course, with such an angular deviation
from the reference frame, the part of the image which can be used
is very small, and the localization becomes impossible if there is
an occultation in this area. Images captured for 0°, 45° and 90°
are shown on Figure 4.

3.2.2 Outdoor experiment For outdoor situations, the cam-
era is mounted on the roof of a robotic vehicle along with a Dif-
ferential GPS (DGPS) sensor to record the ground truth. Accord-
ing to the manufacturer, the DGPS has an accuracy of 1 cm in
an horizontal plane (it is only 20 cm along a vertical axis with
our hardware). Measuring the accuracy of our algorithms is not
straightforward. Two operations are needed so that both data sets
can be compared. First the GPS sensor is not mounted on the ve-
hicle at the same place as the camera. The GPS is located at the



Figure 3: Angular error

Figure 4: From left to right images taken at 0°, 45° and 90°
orientation, with interest points correctly matched

mid-point between the rear wheels of the car, while the camera is
between the front wheels. So the two sensors don’t have the same
trajectory. From the GPS positions, we computed a “’virtual” GPS
which indicates what a GPS would record if it was at the same
place as the camera. In addition, the 3D reconstruction is done
in an arbitrary euclidian coordinate system, whereas the GPS po-
sitions are given in another coordinate system. So the whole 3D
reconstruction has to be transformed using a rotation, translation
and scale change. The approach described by Faugeras and Her-
bert (1986) is used to compute this transformation. After these
transformations have been made, for each camera we are able to
compute the error on the position in meters. Because of the lack
of accuracy of the DGPS along the vertical axis, all the localiza-
tion errors reported for the outdoor experiments are measured in
an horizontal plane only.

Four sequences called outdoor; through outdoors were recorded
by driving manually the vehicle along a 80 m trajectory. The four
sequences were made approximately on the same trajectory ( with
at most a 1 m lateral deviation), the same day. Each sequence
was used in turn as the reference sequence. So we made twelve
experiments : we computed a localization for outdoor; using
outdoor; as the reference sequence for each j € {1,2,3,4}
and i # j. A few images extracted from outdoor; are shown
in Figure 5. The positions of the key frames computed from this
sequence are shown in Figure 6 (as seen from the top) along with
the trajectory recorded by the DGPS. Depending on the sequence,
the automatic key frame selection gave between 113 and 121 key
frames. And at the end of the reconstruction there were between
14323 and 15689 3D points.

We define two errors to measure the reconstruction and the lo-
calization accuracy. We want to distinguish the error that is at-

Figure 5: A few images from outdoori

34

Figure 6: Position of the key frames (circles) with reference to
the trajectory recorded by the DGPS (continuous line). Whole
trajectory on top and close up view at the bottom (units in meters)

tributed to the reconstruction algorithm and the error coming from
the localization algorithm. The reconstruction error is the av-
erage distance between the camera positions obtained from the
structure from motion algorithm and the true positions given by
the DGPS (after the two trajectories have been expressed in the
same coordinate system). The reconstruction error for each of
the sequences was 25 cm, 40 cm, 34 cm and 24 cm for a 80 m
long trajectory with two large turns. This error is mostly caused
by a slow drift of the reconstruction process. It increases with
the length and complexity of the trajectory. That means the 3D
model we build is not perfectly matched to the real 3D world and
computing a global localization from this model would give at
least about 30 cm of error.

However, in many applications, a global localization is not re-
quired. For example, in our application a robot needs to compute
a self-localization so that it is able to follow the reference trajec-
tory. In this case, we only need to compute the distance between
the current robot position and the reference trajectory as well as
the angular deviation from the reference trajectory. A global lo-
calization is not necessary, only a relative position with respect
to the reference trajectory is needed. We define the localization
error in order to measure the error we make in computing this rel-
ative localization with the vision algorithm. We need a somewhat
more complicated definition for the localization error. First we
compute the lateral deviation between the current robot position
and the closest robot position on the reference trajectory. This is
illustrated on Figure 7. The robot position is always defined by
the position of the middle point of the rear axle of the vehicle.
This position is directly given by the DGPS. When working with
vision it must be computed from the camera position and orien-
tation. First we apply a global scale to the 3D reconstruction so
that the scale is the same between the GPS data and vision data.
We start with the localization of the camera C; given by the lo-
calization part of the vision algorithm. From C'; we compute the
corresponding GPS position G (it is possible because we mea-
sured the positions of the GPS receiver and the camera on the
vehicle). Then we find the closest GPS position in the reference
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Figure 7: Computing the lateral deviation from the reference tra-
jectory

Figure 8: Lateral deviation (top) measured with the DGPS d¢
(blue) or with vision dy (red) and localization error € (bottom)

trajectory : we call it Go. At point G of the reference trajectory,
we compute the tangent T and normal N to the trajectory. The
lateral deviation computed with vision is §v = GoG1 - N. The
lateral deviation is computed from the GPS measurements as well
and we get d¢ (in this case we have directly G and G1). G and
0y are the same physical distance measured with two different
sensors. Then the localization error is defined as € = 0y — da.
From this we can compute the standard deviation of e for a whole
trajectory : we call this the average localization error.

We computed the average localization error for each of the twelve
experiments : the smallest was 1.4 cm, the largest was 2.2 cm and
the mean over the twelve videos was 1.9 cm. Figure 8 shows the
lateral deviation and localization error for one experiment with a
1.9 cm average localization error. To make sure that it is a valid
method to measure the localization accuracy, we used a control
law to drive the robotic vehicle. We used in turn the GPS sensor
and the vision algorithm to control the robot. Both methods al-
lowed to drive the robot with the same accuracy (4 cm in straight
lines and less than 35 cm lateral deviation in curves for both sen-
sors). This shows that the accuracy of the GPS and the vision al-
gorithm is equivalent for the autonomous navigation application.
The error can be attributed more to the difficulty of controlling
the robot than to the localization part.

3.3 Robustness

3.3.1 Indoor experiment We made two experiments to eval-
uate the robustness of the localization algorithm. First, we made
no change to the environment between the reference sequence
and the localization step, but up to 6 persons went in front on the
camera to mask a part of the scene. In the second experiment,
we started the localization process with the same environment as
in the reference sequence and we gradually modified the scene.

Figure 9: Images for the off-axis occultation experiment. Top
left : reference image on axis, top right : off-axis image with no
occultation. Second and third rows : occultation by 1 to 6 persons

Number of persons | 0 | 1 [ 2| 3 4 5 6

position error 2|1 1 1 1 1 2
on axis (mm)
position error 8 11 | 4 | 11 |20 | 44 | 132

off axis (mm)

Table 1: Localization error for the occultation experiment

We moved or removed some objects, changed the illumination,
and added some occultations. The modifications were made in 8
steps. For both experiments, we recorded the error between the
computed localization and the true localization. We did this for
two different camera positions : one on the reference sequence
(on axis) and one for a position with 1 m lateral deviation from
the reference trajectory (off axis). The reference trajectory was
the same as in the indoor accuracy experiment. Figure 10 shows
the closest key frame found and some of the images for which the
localization was computed. Correctly identified interest points
are also drawn. Figure 9 shows the images used in the off axis
occultation experiment. The localization error is given in Table 1
for the occultation experiment and in Table 2 for the scene mod-
ification experiment. These results show that the algorithm is
robust to large changes in the environment (modifications of the
scene, occultations and changing light conditions). The reason
is that we have a large number of features stored in the database
and only a few of them are needed to compute an accurate local-
ization. Moreover the constraints on feature matching are severe
enough so that additional objects that are added to the scene are
not taken erroneously as inliers. The performance degradation is
visible only with a large lateral deviation and strong changes to
the environment.

3.3.2 Outdoor experiments For outdoors use, a localization
system must be robust to changes in illumination and weather.
Since the system was developed, we have had the opportunity to

Modification 1 2 3 4 5 6 7 8
step

error on 1 1 2 0 2 5 2 5
axis (mm)

error off 29 | 16 | 18 | 24 | 51 | 100 | 21 | 183
axis (mm)

Table 2: Localization error for the scene modification experiment



Figure 10: Images for robustness evaluation on axis : original
image (A), occultation by 6 persons (B), modifications step 2 (C),
step 4 (D), step 6 (E) and step 8 (F)

Figure 11: Localization robustness to weather changes

try it under different conditions. The robot was able to localize
itself and to navigate autonomously in bright sunlight (even with
the sun in the field of view of the camera) and with snow on the
ground even if the reference sequence was recorded on a cloudy
day without snow. Figure 11 shows the reference sequence on
the left with all the interest points available in the database. Two
images extracted from navigation experiments are shown on the
right with the interest points correctly identified. The map build-
ing process is also robust to moving objects in the scene. We have
been able to compute 3D reconstructions for sequences with up
to 500 m long including pedestrians and moving vehicles (Royer
et al., 2005).

3.4 Speed

The timings were made on a 3.4 GHz Pentium 4 processor with
an image size of 640x480 pixels and 1500 interest points detected
in each frame. The code uses the SSE2 instruction set for all the
image processing. The reconstruction time for a sequence such as
outdoory is about 1 hour. The whole localization runs in 60 ms.
Detecting interest points takes 35 ms, matching takes 15 ms and
computing the pose takes 10 ms.

4 CONCLUSION

We have presented a localization algorithm and shown its perfor-
mance under different conditions. It has been used both indoors
and outdoors and with various cameras. The accuracy with refer-
ence to the learning trajectory is good enough for most robotic ap-
plications. Guidance applications based on this localization sys-
tem have been successfully conducted outdoors with an accuracy
similar to those obtained with a differential GPS sensor. The al-
gorithm runs in real-time for the localization part. The approach
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proposed here works well for our intended application : that is
driving a robot near the reference trajectory. For more complex
navigation tasks either wide baseline matching techniques or a
map with more keyframes from different viewing locations would
be necessary. Future work will be more directed towards an im-
provement of robustness to changes in the environment. Even
if the experiments presented in this paper have shown that the
localization algorithm is robust to some changes, it may not be
enough for an ever changing environment. For example in a
city, cars parked along the side of the road change from day to
day, trees evolve according to the season, some buildings are de-
stroyed while others are built or modified. So our goal is to have
a method to update the map automatically in order to take these
modifications into account.

REFERENCES

Aratijo, H., Carceroni, R., and Brown, C., 1998. A fully pro-
jective formulation to improve the accuracy of Lowe’s pose es-
timation algorithm. Computer Vision and Image Understanding,
70(2):pp. 227-238.

Cobzas, D., Zhang, H., and Jagersand, M., 2003. Image-based
localization with depth-enhanced image map. In International
Conference on Robotics and Automation.

Davison, A. J., 2003. Real-time simultaneous localisation and
mapping with a single camera. In Proceedings of the 9th Interna-
tional Conference on Computer Vision, Nice.

Faugeras, O. and Herbert, M., 1986. The representation, recogni-
tion, and locating of 3-d objects. International Journal of Robotic
Research, 5(3):pp. 27-52.

Fischler, O. and Bolles, R., 1981. Random sample consensus: a
paradigm for model fitting with application to image analysis and
automated cartography. Communications of the Association for
Computing Machinery, 24:pp. 381-395.

Haralick, R., Lee, C., Ottenberg, K., and Nolle, M., 1994. Re-
view and analysis of solutions of the three point perspective pose
estimation problem. International Journal of Computer Vision,
13(3):pp. 331-356.

Harris, C. and Stephens, M., 1988. A combined corner and edge
detector. In Alvey Vision Conference, pp. 147-151.

Hartley, R. and Zisserman, A., 2000. Multiple view geometry in
computer vision. Cambridge University Press.

Kidono, K., Miura, J., and Shirai, Y., 2002. Autonomous visual
navigation of a mobile robot using a human-guided experience.
Robotics and Autonomous Systems, 40(2-3):pp. 124-1332.

Lavest, J. M., Viala, M., and Dhome, M., 1998. Do we need an
accurate calibration pattern to achieve a reliable camera calibra-
tion ? In European Conference on Computer Vision, pp. 158-174.

Nistér, D., 2003. An efficient solution to the five-point relative
pose problem. In Conference on Computer Vision and Pattern
Recognition, pp. 147-151.

Nistér, D., Naroditsky, O., and Bergen, J., 2004. Visual odometry.
In Conference on Computer Vision and Pattern Recognition, pp.
652-659.

Royer, E., Lhuillier, M., Dhome, M., and Chateau, T., 2005. Lo-
calization in urban environments : monocular vision compared to
a differential GPS sensor. In Conference on Computer Vision and
Pattern Recognition.



ROBUST METRIC STRUCTURE FROM MOTION
FOR AN EXTENDED SEQUENCE WITH OUTLIERSAND MISSING DATA

Chia-Ming Cheng, Po-Hao Huang, Shang-Hong Lai

Department of Computer Science, National Tsing Hua University, Hsinchu 300, Taiwan, R.O.C.
Email: lai @cs.nthu.edu.tw

KEY WORDS: structure from motion, robust estimation, projective reconstruction, metric upgrade, LMedS, M-estimation

ABSTRACT:

In this paper, we propose a robust metric structure from motion (SfM) algorithm for an extended sequence with outliers and missing
data. There are three main contributions in the proposed SfM algorithm. The first is anovel jury-based preemptive LMedS procedure
to achieve efficient outlier detection. The second contribution is a new iterative two-step scheme that consists of robust estimation
techniques for projective structure from motion. The third contribution is anovel algorithm for robust metric upgrade by applying the
M-estimator to the traditional linear constraints for metric upgrade. In addition, comparisons of the proposed algorithm with some
previous methods through experiments on simulated data are shown to demonstrate the efficiency and robustness of the proposed

algorithm

1. INTRODUCTION

Structure from motion (SfM) has been one of the centra
problems in computer vision. Recent advances on multi-view
geometry have been summarized in some representative books
[1,2]. Since the outlier and missing data problems are inevitable
during the process of automatic extraction and correspondence
of feature points in practice, recent researches on SfM has
focused on improving the robustness of SfM. In this paper, we
proposed a novel algorithm to achieve the metric SfM for along
sequence with large missing data and outliers. We compare the
proposed algorithm with previous methods through experiments
on simulated data.

Some previous works on dealing with the missing data problem
in SfM are briefly reviewed in the following. For the projective
SfM, Fitzgibbon and Zisserman [4] proposed a solution based
on trifocal tensor. Later, Martinec and Pajdla [3] proposed an
algorithm that combines Sturm and Triggs projective
factorization method [5] and Jacob's fitting method [6] based on
the subspace constraint. Note that this algorithm is used for
comparison with the proposed method in the experimental
results. On the other hand, several related works were
developed under affine camera assumption, i.e. [6, 7], which
simplifies the SfM to alinear system. This affine approximation
of the SfM problem makes it equivalent to principle component
analysis (PCA) with missing data [8], which is easier than the
projective SfM in principle.

In addition, let us consider the other closely related issue -
outlier problem. Up to now, there still exists no solution to
handle outliers under projective SfM for a long sequence,
though there were some previous methods developed based on
pairwise or triplet views. For example, Torr [9] proposed the
MAPSAC technique to estimate the fundamental matrix. Aanaes
et al. [10] proposed to apply the robust M-estimators under the
assumption of affine camera, thus leading to a linear system
equivaent to the problem of robust PCA with outliers [11]. In
this paper, we proposed a robust projective SfM agorithm to
handle outliersin along sequence.
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Figure 1. Flow diagram of the proposed metric SfM agorithm.

The main challenges in SfM come from the input data
contaminated by missing features, mismatches, and false
positions. It is obvious that the subspace / rank constraint on
SfM can dleviate the influence due to Gaussian image noises.
However, the subspace constraint from the measurement matrix
cannot effectively handle outliers. In addition, the high degree
of freedom in the projective matrices as well as the unknown
projective depth makes the detection of outliers difficult.

The main goal in this work is to develop a robust algorithm for
metric SfM from contaminated data without pre-setting any
case-by-case parameters. The flow diagram of the proposed
algorithm is shown in Figure 1, and the details are given in the
next section. There are three main innovative ideas in the
proposed SfM algorithm. First of all, we propose a preemptive
jury-based consensus process, which dramatically improves the
computational efficiency of LMedS estimation for outlier
eimination. Secondly, an iterative projective reconstruction
algorithm is devel oped to achieve the desired robustness. In this
algorithm, each iteration involves first using the preemptive
LMedS procedure to determine the projective matrices and then
applying the robust M-estimator to optimize the projective
structure as well as the projective depth with the projection
matrices fixed. Thirdly, a robust metric upgrade process by



using the iterative reweighted least squared approach is
proposed. For self-caibration, in order to reduce the sensitivity
of decomposing the projection matrix into camera calibration
matrix and metric camera motion, we further take advantage of
hard constraints on the calibration matrix to achieve a more
robust solution.

The rest of this paper is organized as follows. An overview of
the proposed algorithm is given in the next section. In section 3,
we describe the proposed preemptive jury-based LMedS
technique. Then the proposed iterative two-step projective SfM
algorithm is described in section 4. Section 5 presents the robust
metric upgrade process as well as a self-calibration process.
Subseguently, we demonstrate the performance of the proposed
algorithm on both simulated and real data. Finally, we conclude
this paper in the last section.

2. SYSTEM OVERVIEW

The structure from motion problem is to recover camera

motions as well as object structure from a given image sequence.

To focus on the 3D reconstruction problem, we assume the
feature point correspondences across different views in the
video are given. Note that the given correspondences may
include imperfect data, i.e. missing data and outliers. The
camera information includes intrinsic and extrinsic parameters:
the intrinsic parameters are represented by the camera
calibration matrix, K ; the extrinsic parameters determine the
3x 3 rotation matrix, R, and acameratrandation vector t.

The flow diagram of the proposed algorithm is shown in figure
1. Started from the preemptive scoring process, we score each
observation from the two-view geometry, i.e. fundamental
matrix. The second stage is the robust projective factorization
via an iterative two-step reconstruction agorithm. Then a
robust estimation approach is applied to the upgrade the
projective reconstruction into a metric one. The error
evaluation, obtained from the residues between the data matrix
and the reconstructed projection and structure matrices,
provides information for further refinement. Followed by
combining additional views, we return to the first stage until al
views are integrated.

3. JURY-BASED PREEMPTIVE LMEDS

RANSAC [12] and LMedS [2] are two traditional robust
techniques to eliminate outliers. However, these techniques are
computationally expensive. Therefore, we proposed a more
efficient procedure to speed up the computational process.
Motivated by Nister’s preemptive RANSAC [14], we
developed the so-called preemptive jury-based LMedS.

Referred to Nister’s literature [14], the preemptive scheme can
be categorized into the depth first and breath first manners. The
depth first manner, noted as an order rule in the preemption
scheme, dominates the hypothesis generation. This rule selects
the inliers with higher likelihood for hypothesis generation
according to previous experiences. On the other hand, the
breath first fashion, noted as the preference rule, efficiently
evaluates the hypotheses on equa footing. Not all observations
are used to score al the selected hypotheses, but this rule
eliminates bad hypotheses in the scoring procedure.

In principal, Nister’s breath first preemptive scheme has a
potential problem that the final result strongly depends on the
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scoring series. In his agorithm, the measurement is not on
equa footing because earlier selected observations possess
greater power in the hypotheses elimination than the later
selected observations. We can declare that the breath first
preemptive scheme works well only when the outlier rate is
relatively small. Some experimental results will be shown later
to support this argument.

To overcome the above problem with the breath first scheme
and to further improve the efficiency in the LMedS technique,
we develop a jury-based preemptive scheme in conjunction
with the LMedS process. Instead of a single observation as
used in the breath first scheme of the preemptive RANSAC
method, we select a set of observations into a jury. Under the
assumption of random sampling, the outlier rate in jury is
approximately the same as that in whole. Thus, we can
approximate the median vaue efficiently. The proposed
jury-based preemptive LMedS processis given as follows,

1. Generate the hypothesesindexed withh = 1,...,

f(2).

Randomly permute the observations and classify

them into mjuries.

3. Compute the scores Ly(h) = median{ 0 (j, h) | j

belongstojury 1} forh=1,...,f(1). Seti=2.

Reorder the hypotheses so that therangeh =1, . . .,

f(i) contains the best f(i) remaining hypotheses

according to L;_;(h)

Afi>mor f (i) =1, quit with the best remaining
hypothesis as the preferred one. Otherwise,
compute the scores L;(h) = median{ o (j, h) |j
belongstojury1..i,} forh=1,... f(i),seti=i+
1 and go to Step 4.

2.

4.

Algorithm 1. Jury-based preemptive LMedS agorithm

Note that, in Algorithm 1, f (i) —{M 2LBJJ, where M is the

total number of hypotheses and B isthe block size, denotes a
decreasing preemption function that indicates how many
hypotheses are to be kept at each stage. The scoring function,
p(j,h), gives a scalar value representing the log likelihood of

the observation, j, given that the hypothesis, h, is the

correct motion model. Note that observations are random
selection of the input matches which are not used for building
hypothesis. For more details of the theoretica derivation of
the preemptive scheme, the readers can refer to Nister’s original
paper [14]. The notations in this section follow those used in
[14]. We modify the scoring process in the proposed preemptive
LMedS scheme and improve the computational efficiency.
Some experiments on simulated data are demonstrated to show
its performance in section 6.

We applied this procedure to the two stages of our agorithm.
Oneis the computation of fundamental matrix in the preemptive
scoring process; the other is the projective factorization in the
stage of robust projection matrix estimation.

4. ROBUST PROJECTIVE STRUCTURE FROM
MOTION

For projective SfM,
formulated as follows,

the factorization approach can be
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where W is the measurement matrix formed by input data
matrix, U, and their corresponding projective depths, D. The
operator ® denotes the scale (projective depth) multiplying its
corresponding vectors (homogeneous image coordinates). The
matrix formis as follows,
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where u‘j denotes the image position of the j-th point at the
i-th view represented in a homogeneous 3-vector (U', V', ,1)T,
X,
point represented in a homogeneous coordinate, P' isa 3x4
camera projection matrix of the i-th view, and ,11! is the

is the corresponding three-dimensional position of the j-th

corresponding projective depth in the projective geometry. The
projective 3D-to-2D transformation is written as l; ‘j = Pin .

Applying the singular value decomposition (SVD) to the
measurement matrix enforces the subspace constraint, i.e.
rank-4 constraint. Referred to [1], the algorithm iteratively tunes
the projective depths with the subspace constraint to achieve the
projective reconstruction. The convergence property is further
discussed in [1].

4.1 Robust Determination of the Projection Matrices

Projective factorization is very sensitive to outliers. To
overcome such challenges, robust techniques, such as
RANSAC, can dtrategically be applied to the origina
algorithm to improve the results under outlier disturbance. The
basic requirement for such robust techniques to eiminate
outliers is that there exist more than necessary constraints, so
that the reliability of each constraint can be consensually
evauated. For the projective factorization, the minimal
reconstruction set requires 3 views with 6 corresponding points.
The robust version for projective factorization is to apply the
preemptive jury-based LMedS to the projective factorization
[1]. Note that the feature selection is based on the Monte-Carlo
process according to the preemptive scores.

4.2 M-estimator to Compute the Projective Sructure

Given a set of 2D image points with the associated projection
matrices, the corresponding three-dimensional feature points
can be computed with a closed-from solution once the
projective depths are known. However, the projective depths are
generally unknown. Therefore, we carry out an iteratively
approach to estimate the optimal three-dimensional structure by
adjusting the projective depths appropriately. For the k-th

iteration, we denote the current depth matrix as D(k), and the
closed-from solution can be formulated as follows,
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where P denotes the pseudo-inverse of the matrix P . Each

projective depth entry in D" & the next iteration is then
i) i (] /i

updated as i _|||:>')((j "/"U'," However, to further

improve the robustness, we apply a robust measure at the outer
loop. Thus, the RLS (re-weighted |east square) solution replaces
the LS (least square) solution in equation (3). We make use of
the robust p function, such as the Lorentzion (or Cauchy)

function [14] commonly used in robust statistics, to develop the
M-estimation for the projective factorization. The robust P

function is defined [14] asfollows

I,2
p(r)= |09(1+72 )
o (4

The minimization of the robust energy function can be achieved
by the iteratively RLS minimization. In this case, the weights
are associated with the given projective matrices, and the
residue is the norm of the error between the 2D image points
and the obtained projective reconstruction which is determined
a the inner-loop by adjusting the depths as described above.
Thus the energy function to be minimized can be written as the
following dynamic energy function, which is changing from
iteration to iteration.

w px =w" (D®U) ©)

where the weights associated with the residue is given as
follows

267
267 +12

W= ®)

Note that é=1.4826(l+5/(n—p)) [E., is the median
absolute deviation (MAD) estimation [14].

1. Initidlize dl theweightsto 1,i.e W =1.
2a Initidlizeall 2)® =1 for D andset k =0.

2b. Normalize the depths by multiplying each column
of D with a constant factor.

2c. Solve x () _ = (D(k) M )

2d. Update A/ . set k=k+1
2e. Exit the inner-loop if converged, else go to step
2b.
3. Update the weights by the M-estimator from eq(5)
4., Exit if converged, else go to the inner loop in step 2.

Algorithm 2. Robust M-estimation of the projective structure
with projective matrices given.

With this modification, the pseudo-inverse of P, turns from the



LS solution, p*:(pr)flpT , to the RLS solution,

P!, :(pTWZP)'l PTW2 . Given the projective matrix, the

algorithm2 shows the robust estimation of the homogeneous
three-dimensional structure. Note that step 2 in Algorithm 2 is
the inner-loop in order to iteratively determine the projective
depths; step 1, 3, and 4 is for evaluating the reliability of the
input projective matrices for robust estimation of the projective
structure.

5. ROBUST METRIC UPGRADE

To upgrade the projective reconstruction to a metric one, we
have to determine the ambiguity matrix, H in eguation (1).
This has to employ additional constraints, which may come
from the prior knowledge of the camera calibration matrix.
According to the absolute quadric constraint [17], the projection
of the absolute quadric in the image yields the dual image
absolute conic. This formulation of the absolute quadric
constraint is shown as follows,

C ot T
o = KK « PQP @

The following assumptions provide linear constraints for the
entriesin asymmetric 4x4 rank-3 matrix Q’,i.e

21, plopliT = plig Pl
s=0 pl(l)Q*pl(Z)T _

By Pl
(Uy V) P:(Z)Q*FI’I(S')T _

®)

Note that (fx, fy) are the focal lengths along x- and y-axis,
respectively, S denotes the skew factor, (uo,vo) is the
principle point or image center, and Pi(j) denotes the j-th row

of P, . Thelinear (closed-form) solution is referred to [19].

In order to obtain a more robust solution, we weight each
constraint with the robust M-estimator, which is similar to the
computation of the robust projective structure introduced in
section 4.2. For each view, we have the following linear
equations,
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In order to clarify the notation, we denote Q' as the initia
absolute quadric computed from the above equations, which
may not be exactly rank-3. At the beginning, we set equal

weights for each view, i.e w=1, to determine Q" . By

enforcing the rank-3 constraint on ", we determine the
absolute quadric Q" via SVD. However, this step leads to
additional errors in the linear system, thus we define the
following residue for each projection matrix,

According to the residues, we re-adjust the weights as equation
(6), i.e. Lorentzion (or Cauchy) function [14] mentioned in 4.2.
The RWLS process, iteratively reducing the residues under the

rank-3 congtraint on through tuning the weights, turns out
to be an M-estimator for robust metric upgrade.

6. EXPERIMENTAL RESULTS

In this section, we show some experimenta results of the
proposed agorithm in comparison with some previous
methods on simulated data. We first show the experimental
comparison of the proposed jury-based preemptive LMedS
algorithm, followed by the experimental comparison for the
proposed SfM algorithm.

We used 200 point correspondences with additive Gaussian
noises (standard deviation = 1.5) in image as well as 5~40%
gross outliers. We compared the proposed preemptive LMedS,
which uses the block size B=1 and 10 observations in a
jury, with Nister’s preemptive RANSAC, with the block size
B=10, LMedS, and MAPSAC dgorithms with this
experiment on fundamental matrix estimation with
contaminated data._For a fair comparison, we used the same
Torr’s seven-point method for computing the fundamental
matrix for al the above four algorithms. Furthermore, the four
algorithms share the same set of hypotheses which were
randomly generated from 1000 samples, so that we examined
which of these four methods makes the best use of the
hypothesis. The experimental results shown in Figure 2
indicate that the proposed scheme approximates the
performance of the full-scoring procedures, i.e. LMedS and
MAPSAC, and it reduces 90% of the full-scoring burdens.
Thus, it shows the advantage in the computational efficiency of
the proposed algorithm.
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Figure 2. Robust computation for increasing outlier rate with the same set of hypotheses. Left: detection rate of the outliers;
Middle: Image error that represents the correctness of fundamental matrix; Right: scoring counter.

In the following, we show the experimental comparison of the
SfM methods on simulated data. The simulations are designed
to examine the performance under different data missing and
outlier rates. We compare the proposed SfM algorithm with
Martinec and Pajdla’s algorithm [1]. Their code is available
from the public domain. Note that their metric upgrade process
is removed since it crashed for some simulated cases. So we
upgraded their projective reconstruction according to the ground
truth.

The simulation environment is as follows. First of al, we
randomly generated 300 points within a 20 unit length squared
box in 3D space, and its center is randomly located around the
world center in the radius of 10 unit length. Thirty cameras are
located in a circle of radius 100 unit length, and their viewing
directions are the world center plus additional random rotation
within 5 degrees in Euler angle. Calibration matrices are
constant with focal lengths within 1500, and skew parameters
1.5, and image center (1000, 650). Each observation point is
perturbed with Gaussian noises ¢ = 1.5, followed by the
rounding operation. The outliers are randomly selected
according to the simulated outlier rate. The farthest points to the
current camera are selected as the missing points at that view
according to a given missing rate. One hundred trials are made
to obtain the final results.

We examine the reprojection error, 3D reconstruction error, and
recongtruction rate at different data missing rates and outlier
rates to compare the performance. The reprojection error
evaluates the error between reconstructed and measured points
in image space, and the 3D error is measured in RMS of the
Euclidean distance of the simulated unit length. The
reconstruction rate is the ratio of the reconstructed points to the
total number of points.

In the first simulation, we examine the algorithms with different
missing rates as shown in Figure 3. In the second simulation, we
examine the robustness under different outlier rates with a
constant missing rate as shown in Figure 4. Then, we test the
performance with more views integrated as shown in Figure 5.
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Figure 3. (a) The reprojection errors and (b) the 3D errors at
different missing rates for the proposed algorithm and Martinec
and Pajdla’s agorithm.

7. CONCLUSION

In this paper, we proposed a novel robust metric structure from
motion algorithm for a long sequence with outliers and large
missing data. The jury-based preemptive LMedS procedure was
developed to achieve efficient outlier detection in the robust
projective SfM. In addition, we also applied robust estimation
techniques in the projective SfM as well as the metric upgrade
processes. We demonstrate the robustness, accuracy and
efficiency of the proposed SfM agorithm through experimental
comparisons with previous methods.
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Figure 5. (a) The re-projection errors; (b) the 3D errors; (¢) the reconstruction rates at different views for the proposed algorithm and

Martinec and Pajdla’s agorithm.
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ABSTRACT:

This article describes a new method of Shape from Shading, Shape from Isophotes. Shape from Isophotes uses the image isophotes
for recovering the object surface normals. It is a propagation method. It initially directly recovers a small number of surface normals
and then uses them to estimate normals at neighboring points in either adjacent isophotes or within the same isophote. The
propagation can start either from occluding contours or singular points. Shape from Isophotes explicitly addresses brightness
quantization errors, which can affect the performance of traditional Shape from Shading techniques. Since our method is based on
the relationship between isophote curves and changes in surface normals [9,10], it is mainly applicable to smooth diffuse surfaces.
The accuracy of the proposed technique was measured using synthetic images of simple objects with Lambertian reflectance, as well
as real objects of known geometry. The normal map was recovered with accuracy of well bellow 7° average error. The method
requires some interpolation, as it is possible that we may not be able to recover the surface normals at each pixel

1. INTRODUCTION

There is a big body of work done in the field of Shape from
Shading (SFS), [1,2,3,4,5,7,8,11,12,14,15] just to mention a
few. Despite their inherent limitations (they often need input
images of scenes with strong parallel illumination rays and/or
impose object surface restrictions), they are still often used
especially for the shape recovery of smooth, featureless
surfaces.

Among the first SFS approaches was Horn’s use of a set of five
differential equations whose solution produces a curve [5], a
characteristic strip. The direction of characteristic strips is the
direction of the intensity gradients, and in the case of a
rotationally symmetric reflectance map they are the curves of
steepest descent. Though Horn’s characteristic strip technique
demonstrated that the recovery of a normal map is feasible from
a single image, it may, like most gradient descent methods,
produce erroneous results (for more details see section 2.1).
Newer algorithms that are still based on gradient descent like
Dupuis and Oliensis [3], and Bichsel and Pentland [1] are still
suffering from the same limitation.

Other researchers used different techniques to recover the
surface normals from intensity images. For example, Kimmel
and Bruckstein [8] use level sets for recovering shape from
shading. Another class of SFS algorithms treats shape recovery
from irradiance as a minimization problem. For example,
Horn’s [7] minimization approach replaces the smoothness
constraint with an integrability constraint. Frankot and
Chellappa’s [4] minimization approach places emphasis in
enforcing integrability. Zheng and Chellappa [15] replace the
smoothness constraint with an intensity gradient constraint.
Pentland uses a local approach in [11] based on the local
sphericity assumption. However, they too have their limitations.
Most minimization approaches have a tendency to be slow.
Furthermore, standard variational algorithms may not
reconstruct a surface from noisy images even after thousands of
iterations [2].
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Other shape recovery methods obtained very good results:
photometric stereo [13], stereopsis, moving light source,
structured light. These methods require multiple images often
obtained under controlled conditions. Photometric stereo uses
multiple images of the same object taken under different
lighting conditions. The multiple illumination setup creates a
system of irradiance equations which are used to recover the
normal map (and albedo). Binocular (polyocular) stereo does
not typically impose any restrictions on illumination, but
requires capturing a scene from multiple viewpoints using at
least two cameras. It tries to identify features in two or more
images that are projections of the same entity in the 3D world.
Structured light uses pictures of objects illuminated by a pattern
of light. The camera senses the result as a grid distorted by the
surface structure and its pose. Thus, although these shape
recovery methods do not have the same constraints as SFS
methods, they too have their inherent limitations.

Our methodology, Shape from Isophotes, is focusing on
overcoming some of the shortcomings of SFS methods. More
specifically, Shape from Isophotes avoids differentiation which
results in improved (pixel level) accuracy. Unlike most of the
previous methods, it is not gradient descent based and can be
applied on piecewise smooth surfaces. It also explicitly
addresses complications that may arise from brightness
quantization errors. Our technique is not without limitations.
Like other SFS methods, we too assume single distant point
light source and orthographic projection.

The Shape from Isophotes (SFI) method is based on the close
relationship between isophotes (regions of constant brightness)
and surface normals [9, 10]. It initially directly recovers a small
number of surface normals either on occluding contours or on
singular points, in general on any pixel where a surface normal
estimate can be directly obtained from the image. We then use
the structure of isophote regions in an image to recover the
remaining surface normals. Specifically, our method is
composed of 2 parts: a) the method that deals with surface



normals at the border of isophote regions, which we will refer
from now on as the border method and b) the method that
propagates the surface normal information within an isophote
region which we call the interior method. The border method
calculates new values for the surface normal when there is a
change in the image brightness between adjacent pixels, the
interior method chooses the propagation direction for a known
surface normal as long as there is no change in the image
brightness.

2. OVERVIEW OF SHAPE FROM ISOPHOTES
METHOD

2.1 Intensity Gradients and Curves of Steepest Descent

Many SFS algorithms [1, 3, 5, 8] use the direction of steepest
descent, in recovering the surface normals. This principle states
that if a step is taken in the image plane in a direction parallel to
the gradient of the reflectance map, the corresponding step in
gradient space is parallel to the gradient in the image. For
rotationally symmetric reflectance maps, the direction of
intensity gradient is also the direction of steepest descent [6].
However, these algorithms may fail to orient the surface normal
correctly, particularly in regions where different surfaces may
result in similar intensity gradients (for a graphic representation
of this problem see figure 2). The effect is more pronounced
when surface orientation is recovered based on local
information.

Figure 1. Synthetic image of a hyperboloid, Lambertian
surface, illuminated by a distant point light source aligned
with the optic axis.

Consider, for example a hyperboloid Lambertian surface,
illuminated by a single distant light source aligned with the
optic axis (see fig. 1). We use the notation (p,q) for the gradient
of the surface. p is the slope of the surface with respect to the
X-axis, i.e. p=2af(x,y)/ox while q is the slope of the surface
with respect to the Y-axis, i.e. q=0f (x,y)/dy . Assume that
the reflectance map R(p,q) has a unique isolated maximum at
(Po.0o). Which means R(p,q)<R(po.qo) for all (p.q) # (Po.qo)
where R(p,q) is the reflectance map of the surface. Assume that
at some point (XoYo) in the image, the image irradiance
E(Xo,Y0)=R(po,go)- This point is called a singular point and the
gradient (p,q) at this point is uniquely determined to be (po,qo)
[6]. In our example, the singular point is at the centre of the
image. The isophotes close to the singular point are almost
circular. Still the surface is far from being rotationally
symmetric. This suggests that there are cases when the
characteristic curves methods may produce erroneous results
For instance, as shown in fig. 3, a characteristic strips method
can lead to incorrect normals during propagation, even though it
starts with accurate normal recovery at the singular point.
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Figure 2. Three possible surface normal orientations on a
singular region border

In fact, the singular point is often a singular region in images,
due to brightness quantization, and most of its normals are
neither identical, nor parallel to the incident light direction.
Figure 2 graphically demonstrates a few possible normal
orientations at the border of the singular region. The normals’
directions inside the singular region are close enough to the
light direction so that the whole region has maximum
brightness. The propagation methods often approximate the
region around the singular point with a spherical cap.

Characteristic strips methods are particularly sensitive in
surface recovery in hyperbolic points, partly because they
propagate normal information along the direction of intensity
gradients. In order to overcome this, we decoupled the surface
normal recovery computation from the propagation process.
Our method, Shape from Isophotes, does not use the direction
of steepest descent. More specifically, the surface normal
recovery computation is done during the border method phase
(see section 2.2) and the propagation during the interior method
phase (see section 2.3).

Figure 3. Characteristic strips (in dotted line).

Figure 4 shows the expected outcome of Shape from Isophotes
for the same example of singular region. The solid arrows
represent normals, the dotted lines the propagation path; the
grey areas are isophote regions and the lines between them the
borders between the isophote regions. The singular region has
surface normals on the border similar to those in fig. 2(a).

Figure 4. Shape from isophotes method.



2.2 Surface Normals at the Border of Isophote Regions

Consider two infinitesimally small planar surface patches p;
and p, such that they correspond to image patches close to the
isophote border which also lie on different sides of the border.
Assume that we know the normal n; to the surface at a point P,
inside the surface patch p;. P, is adjacent to the border with the
other isophote region. Then there is enough information to find
the normal n, at the point P, inside the surface patch p..

Let n be the normal to the plane p which is perpendicular to the
image plane and tangent to the isophote border (see figs. 5, 6,
and 7). Then the normals n;, n, and n are coplanar, being
normals to three planes whose intersection is a line. n; and n
constraint n,. Let S, be the set of possible surface normal for
patch p, (see fig. 7). Since n, must be coplanar to n; and n,
there is a very small solution space for S,. For example, for a
Lambertian surface, the normals n; and n must lie on a cone
centred at the light source direction (ps,gs). Then we can find
the possible n, values by applying the co-planarity constraint to
Sz.

X Object image

The object
reflected
light

he source light
is situated at an
infinite distance

Figure 5. The image formation and the patch-plane
correspondence. An object, its image, the isophote regions, the
p: and p, patches, the p plane and the n;, n, and n normals.

p
Ny

Nz
P1

P2,
Figure 6. ny, n, and n are coplanar if the planes

intersect on a line. The p; and p, patches, the p plane
and the ny, n, and n normals isolated

Figure. 7. The intersection between S (the set of
possible normals for the brightness of the point P,
and light direction) and the plane (n,,n) gives
three solutions in this particular case.

However, the only feasible n, values must lie on the
intersection of the cone with the plane that contains n; and n.
Then 0, 1 or 2 solutions are obtained. Normally, O solutions
should never be obtained. If 0 solutions are obtained, the
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starting normal had the wrong value and one should restart the
computation with a different starting normal value. 1 solution is
obtained inside a singular region. 2 solutions are obtained
everywhere else. In practice, quantization errors make obtaining
0 solutions possible even if there should be 2 very close
solutions. We chose to stop the propagation if the solutions
were close to each other. In conclusion, by using our border
method, we can estimate the surface normals at a pixel
bordering an isophote region, once the normal at the other side
of the border is known.

2.3 Surface Normals within an Isophote Region

Once a normal of an isophote region is known we can propagate
that information inside an isophote region. We assume that
locally the isophote is a developable surface with generator line
L’y. We propagate the surface normal information along the
generator line or its approximation since that is the direction of
minimal change. For approximately Lambertian surfaces it
suffices to propagate along the plane of incidence. The plane of
incidence at a point P is the plane defined by the incidence
beam and the surface normal at point P (see fig. 8).

If the intersection between the incidence plane and the surface
is a line, then it is the generator line L’,. However, brightness
quantization can create isophote regions resulting in the loss of
finer shading information which cannot be recovered. Though
we can not recover the original object shape, we can still extract
the shape of a polygonal object which approximates the original
object shape. For the approximate polygonal object, the image
isophotes correspond to the planes of the object. We need to
find out the generator lines L’y which generate these planes.
The surface normal does not change along that line.

Figure 8. The construction for Surface Normals within
an Isophote Region for a Lambertian surface

For diffuse surfaces in general, we can compute L’y as follows.
Assume that we choose three points n;, ny, nz in (p,q) space so
that they lie on the locus of the same constant intensity (see fig.
9a). Each of these three points n; is represented by a plane p; in
(x,y,2) space (see fig. 9b). The intersection between any pair of
these planes in (x,y,z) space is a line L’; which is represented in
(p,q) space by the line L; that connects the corresponding points
of those planes. The intersection between the planes p; and p; is
represented by the line L; which connects n; and n,. Now if ny,
n,, Nz are very close to each other, the lines that connect them
are almost parallel to the tangent L, to the curve in the middle
point n,. This means that the intersections of the planes py, p,
and ps become almost parallel to the line L’y in (x,y,z) that
corresponds to that tangent. One can think of the planes py, p;
and ps as part of a developable surface whose generator is line
L’o.

Consider now all the points of the locus on which ny, n, and n3
lie. Each of the points on that locus corresponds to a plane in



(x,y,z) space. For each triplet of closely spaced consecutive
points on the locus, one can apply the same logic. Thus, the
normals on the entire locus corresponds to a developable
surface whose generator is line L’g. The entire developable
surface is contained in the same isophote in our image.

The normals in other points of the same isophote region can be

obtained either by interpolation, or by applying either the

interior method or the border method to another known normal.
Lo

(p.q) space

ny

L.

n3
Ly

ny

(Xxyvz) space

Figure 9. Three points on a curve both in a) (p,q) space
and b) (x,y,z) space

2.4 Shape from Isophotes

In order to extract the surface normals at the whole surface, we
combine both the border method and the interior method. On
the isophote regions’ borders the border method is applied,
while in the interior of the isophotes regions’ the interior
method is applied. Both methods introduce some errors due to
quantization, but the errors are within acceptable limits (see
sections 4.1 and 4.2).

Figure 10. Shape from Isophotes can start at a singular point,
as in this example, of from occluding contours.

Figure 10 shows the method applied to a simple convex object.
Each different shade of grey represent a distinct isophote
region. The propagation in this example started from the
singular point. The arrows represent propagation directions.

Figure 11 shows the first 4 cycles of the method. The object
was a sphere. The starting points are the border of the singular
region. The upper row shows the propagation curves. The lower
row shows the detected isophote region borders.

To summarize, the Shape from Shading algorithm is as follows:
1. Directly compute starting surface normals where available
(e.g. at singular points or occluding contours)

2. Propagate away from the starting normals as follows:

If the current normal is adjacent to an isophote region apply the
“border method, else apply the “interior method”

Figure 11. Hyperboloid, Lambertian surface, light
perpendicular to the image.

3. EXPERIMENTS

In order to test the limitations of our method we first performed
a series of test on synthetic images. That allows us to provide
quantitative error measurements and examine the sensitivity of
our method to noise. The objects’” geometry and surface
normals are known.

3.1 Synthetic Data

The sample images were created using a Lambertian surface,
the error was calculated by averaging the angle between the
calculated normal and the known normal at every point of the
image that represents the object. The light source is a point light
source at infinite distance. We tested the algorithm on two
shapes: a hyperboloid and a cone. Two errors were calculated
for each object: one before there was any interpolation done and
one after the interpolation. Our first test (see figures 12 and 13)
assumed ideal data, with no noise, so our only source of
inaccuracies is quantization error. In order to test the sensitivity
of our algorithm to noise, we added a random noise of +/-2
intensity values at each pixel (see figures 14 and 15).

Shape Average error before | Average error after
interpolation interpolation

Hyperboloid - | 1.502% (2.704°) 1.700% (3.060°)

noise free

Cone —noise free | 1.665% (2.998°) 1.769% (3.1849)

Hyperboloid  — | 2.719% (4.892°) 2.800% (5.039°)

noisy

Cone — noisy 2.134% (3.842°) 2.431% (4.376°)
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Table 1. Average error for the Hyperboloid and Cone
synthetic images

We started the propagation from the points on the occluding
boundary. The albedo of the objects was known in advance. In
each of the figures 12, 13, 14 and 15 the image that was
analyzed is shown on the left, the recovered normal map is
shown in the middle and an error image is shown on the right.
The error image shows the error distribution on the surface.
Darker areas have smaller errors, lighter ones bigger ones. The
contrast was enhanced from the original image so that white
corresponds to 100% error and black to 0% error for a better
visibility. The biggest errors occur in the interpolated areas.



Figure 12. . Hyperboloid, Lambertian surface, light
perpendicular to the image

Figure 13. Cone, Lambertian surface, light perpendicular to
the image

Figure 14. Hyperboloid, Lambertian surface, light
perpendicular to the image

Figure 15. Cone, Lambertian surface, light perpendicular to
the image.

3.2 Real Data

We also applied our algorithms on real data. The images were
taken in a controlled environment. The objects were less than
10cm tall and the single light source was positioned about 50
cm away from the objects. The light source was positioned
roughly above the XCDSX900 Sony camera. We used cross-
polarization to eliminate specularities. We performed
experiments on a white torus (fig. 16) and a billiard cue ball
(fig. 17).

Shape Average error before | Average error after
interpolation interpolation
Billiard ball | 3.813% (6.864°) 3.724% (6.704°)

Table 2. Average error for the Billiard ball image

Figures 16 and 17 show the images of the objects on the left and
the recovered normals on the right. Since the billiard cue ball
has known dimensions we performed error analysis on that
object. As expected, the error is bigger than in the synthetic
images, but an average error of less than 7° is a strong
performance. The bigger error of the billiard ball sample is due
to image noise, reflections, non-uniformity of the illuminant
and inaccuracies in the position of the light source.
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Figure 16. Torus

Figure 17. Billiard ball

4. LIMITATIONS

Our method has its limitations. Its accuracy depends on how
accurately we can recover the surface normals at occluding
contours. We tested the sensitivity of Shape From Isophotes to
the accuracy of the estimates at the occluding contours for the
hyperboloid synthetic image. Each normal at the occluding
contour was perturbed by at most 1°, 2° 3° 4° and 5°
accordingly. As expected the accuracy of the recovered normals
was affected proportionally (see table 3), but the error in the
recovered map was still below 18°. Furthermore, when the
normals at occluding contours are error prone, the propagation
paths are short and erratic (Figure 18a). Thus, one can detect
that feature and associate a reliability measurement to each
recovered normal.

Figure 18. Propagation curves for a) erroneous starting
surface normals at the occluding contours and b) accurate
starting surface normals at the occluding contours

Initial normals errors Average Recovered
normals error

0 1.465% (2.638°)
Between -1° and 1° 1.911% (3.441°)
Between -2° and 2° 3.460% (6.228°)
Between -3° and 3° 5.382% (9.687°)
Between -4° and 4° 7.921% (14.259°)
Between -5° and 5° 9.664% (17.396°)

Table 3. Average recovered normals error for an hyperboloid
image when there are starting normals errors

Lastly, like other SFS methods, our technique, as is, is currently
applicable to diffuse surfaces only. The surface generated by
propagating from the starting curve might not cover the whole
visible surface, so additional curves or some interpolation might
be needed.



5. UNKNOWN LIGHT SOURCES

The light source does not need to be parallel to the viewer
direction. Figure 19 shows normals recovered when the light is
not parallel to the viewer direction, but is known. More
specifically, in each of the synthetic images shown in figure 19
(from left to right) we moved the light source along the X-axis
so that it would form a 5.7°, 11.3° and 16.7° angle with the optic
axis accordingly. The error in the recovered map is 1.616%
(2.9089), 1.452% (2.613°) and 1.621% (2.918°) accordingly.
After interpolation the error becomes 1.747% (3.144°), 2.172%
(3.910°) and 2.447% (4.404°).

If our estimate of the light source position is erroneous, the
normal map can still be recovered, but the larger our error in the
light source position, the bigger our error in the recovered
normal map. More specifically, for light source direction error
of 5.7° the normal map error is 2.389% (4.301°), for 11.3 ° it is
4.407% (7.933°) after the initial light source direction error was
again subtracted from the obtained normals. In this latter case
the coverage was reduced to one side of the object and the strips
were looking chaotic (figure 18a).

Figure 19. Hyperboloid, the source light comes from the
right 5.7°, 11.3° and 16.7°

One can take advantage of the localized irregularities in the
propagation direction and use them for iteratively improving the
light source estimate. For example, the following algorithm
could be used for detecting the light source direction, starting
from an initial light source estimate:

1. Calculate starting normals using the light source direction

2. Calculate the normal map

3. Check strip coverage.

4. If the strip coverage contains erratic strips, move the light
source toward the opposite direction of the object region which
contains those strips and go to 1. Otherwise end the algorithm
and keep the recovered light direction.

6. CONCLUSIONS

We developed a new Shape from Shading method that uses the
image isophotes in recovering surface normals. Unlike
minimization methods it does not suffer from numerical
instabilities and because the propagation direction is decoupled
from the gradient direction it is less error prone than
characteristic strip methods in areas where the gradient is zero.
Our quantitative error analysis showed an improved
performance with average error of less than 7°. The errors are
attributed to noise and to the fact that real images do not fully
satisfy the simplifying assumptions of our theory (i.e. inter-
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reflections, not truly distant light sources, etc.). Future work
includes experiments using complex surfaces and relaxing more
initial conditions. We are currently investigating isophote based
techniques for iteratively estimating the light source direction
and the normal map. We also want to expand our method to
work with more complex reflectance maps, i.e textured surfaces
and surfaces with specularities and shadows.
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ABSTRACT

A framework for the comparison of photoconsistency measures used in voxel coloring algorithm is described. With this framework,
the results obtained in generalized voxel coloring algorithm using certain photoconsistency measures are discussed qualitatively and
quantitatively. The photoconsistency measures are based on standard deviation, Minkowsky distance, adaptive threshold, histogram,
and color caching. Quantitative measurement is performed with root-mean-square-error and normalized-cross-correlation-ratio. The
results show that, the photoconsistency measures which require threshold(s) may produce better/worse results depending on the selected

threshold(s). Also, modeling textured objects always produce better reconstruction results.

1 INTRODUCTION

The main goal of volumetric scene modeling approaches is to find
out, whether a given point is on an object’s surface in the scene
or not. According to the information being used in reconstruc-
tion, these approaches are classified into two groups: shape-from-
silhouette and shape-from-photoconsistency. In shape-from-silhou-
ette approaches, the model is extracted using back projections of
the silhouettes onto the images: Each back projected silhouette
corresponds to a volume in the space; intersection of these vol-
umes gives the model (Miilayim et al., 2003). In shape-from-
photoconsistency approaches, on the other hand, the photocon-
sistency of light coming from a point in the scene is taken into
account: If the light coming from a point in the scene is not pho-
toconsistent, then this point cannot be on a surface in the scene.
In both approaches, the space is modeled using volume elements,
voxels. Voxel coloring and its variations (space carving (Broad-
hurst and Cipolla, 2000, Kutulakos and Seitz, 2000), generalized
voxel coloring (Culbertson et al., 1999), multihypothesis voxel
coloring (Steinbach et al., 2000), etc.) are in shape-from-photocon-
sistency group. These variations differ in the way they determine
the visibility of a given voxel. When the same photoconsistency
measure is used, a significant difference in the output is not ob-
served. So to say, in voxel coloring algorithm and in its varia-
tions, the reconstructed model highly depends on the used pho-
toconsistency measure. In this study, generalized voxel coloring
algorithm is used to compare the effect of different photocon-
sistency measures. The experiments are performed on 3 image
sequences. Results obtained through different photoconsistency
measures are then compared using image comparison techniques,
root-mean-square-error and normalized-cross-correlation-ratio.

The organization of the paper is as follows: In the following sec-
tion, voxel coloring algorithm used in this study is explained in
detail. This section is followed by Section 3 in which photocon-
sistency measures used in voxel coloring are presented. Quali-
tative comparison of photoconsistency measures is described in
Section 4. Results obtained in the framework of this study are
given in Section 5. The paper concludes with Section 6, in which
the results are discussed and comments about the presented pho-
toconsistency measures are made.

*Corresponding author.
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2 SHAPE-FROM-PHOTOCONSISTENCY

Depending on surface properties, lighting conditions and viewing
direction, color of light coming from a point in the scene varies.
Nevertheless, different observations should be coherent. In other
words, a point on a surface should be seen with similar colors
when it is not occluded. This phenomenon is called photoconsis-
tency. Shape-from-photoconsistency approaches of volumetric
scene reconstruction are based on this property of surfaces. If the
light coming from an unconcluded portion of the scene is pho-
toconsistent, then this point should be on a surface in the scene.
Otherwise, it should be empty. This claim is based on a couple
of assumptions: Objects in the scene have Lambertian surfaces,
and projection of any point in the scene on the images can be
computed (Kutulakos and Seitz, 2000).

In this study, due to its easiness in implementation, generalized
voxel coloring algorithm is used. In order to improve computa-
tional cost, convex hull of the object is computed, and it is used
as the input of voxel coloring algorithm. For each view, voxel
space is divided into layers according to the distance to the view
point. From nearest to furthest, layers are traversed, and the vox-
els are checked for visibility. Initially, all pixels in all images are
unmarked. At each level, visible pixels are marked, so that the
visibility of voxels at the following layers can be decided. As-
sume that a voxel v at some further layer is visited. Compared
to the other voxels which are at nearer layers, it should have less
number of visible pixels in each image. Having extracted visible
pixels from all images, a set of colors is obtained. If this set is
photoconsistent, then the voxel is on the surface. The pixels are
marked and next voxel is processed. If the set is not photoconsis-
tent, then the voxel is removed from the model. The ordinal vis-
ibility constraint and traversal of voxels based on layers makes it
possible to use pixel marking as an efficient tool to handle occlu-
sions: Single sweep through the voxel space is enough to reduce
the voxel set to a more photoconsistent state. This procedure is
iterated until all voxels are photoconsistent.

3 PHOTOCONSISTENCY MEASURES

As it is mentioned in the previous section, removal or coloring
decision of a voxel depends on the set of colors, which is ob-
tained by projecting the voxel onto the images. Given n images,



assume that Io, I, ..., [,—1 are the images in which voxel v is
not occluded. Then, for v, a nonempty set of colors, 7, is ex-
tracted from the images as shown in Equation 1 where 7; is the
set of colors extracted for v from image j, and co, c1, ..., ¢y, are
the extracted color values.

p—1
™= Uﬂ'j ={co,C1,.yCm} e))

=0

Once this set is extracted, its photoconsistency can be defined in
various ways. Some criteria used in the literature are as follows:

1. Standard deviation (Seitz and Dyer, 1999, Kutulakos and
Seitz, 2000, Culbertson et al., 1999, Broadhurst and Cipolla,
2000),

2. adaptive threshold (Slabaugh et al., 2004),
3. Minkowsky distance (Slabaugh et al., 2001),
4. histogram (Slabaugh et al., 2004),

5. color caching (Chhabra, 2001).

3.1 Standard Deviation

Using standard deviation o as a photoconsistency measure is pro-
posed by Seitz and Dyer (Seitz and Dyer, 1999). If the standard
deviation o of 7 is less than a threshold 7, 7 is photoconsistent,
which means the v is on the surface.

true,

consistent(v) = { False

o<T } )

otherwise

3.2 Adaptive Threshold

The consistency measure based on standard deviation works well
when the object’s surface color is homogeneous. Otherwise, it
easily diverges. In order to handle this problem, Slabaugh et
al. (Slabaugh et al., 2004) proposed a new photoconsistency mea-
sure called adaptive threshold: If a voxel is on an edge or on a
textured surface, then the variation of the extracted color values
is higher. Larger thresholds should be used so that the photo-
consistency measure converges. Assume that a voxel v, which
is on an edge or on a textured surface, is visible from p views,
Io, I1, ..., I,—1. Then, the color sets extracted from these images
for v are mo, w1, ..., Tp—1, and the standard deviations of these
sets are 0g, 01, ..., 0p—1, respectively. These standard deviations
should be high, since v is on an edge or on a textured surface.
The average of these standard deviations, which is given in Equa-
tion 3, should also be high. By using this observation, authors
define a new photoconsistency measure called adaptive threshold
as given in Equation 4.

1
s DL 3)
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false, “)

consistent(v) = { o< T1+0T2 }

otherwise

This measure brings an important advantage over the measure
based on standard deviation: The value of threshold is variable
according to the place of the voxel. If the voxel is on the edge
or textured surface, this situation can be detected with high stan-
dard deviation in each image, and a greater threshold can be used.
Adaptive threshold measure is actually superset of the measure
based on standard deviation. The need for 2 thresholds is its main
disadvantage.

3.3 Minkowsky Distance

Photoconsistency of a set can also be defined using Minkowsky
distances, L1, L2 and L. Minkowsky distance between two
points z and y in R* is given in Equation 5.

p
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Assume that a voxel v is visible from p views, Io, I1, ...
and the color sets extracted from these images are 7o, 71, ..., Tp—1.
Every color entity in each of these color sets should be in a certain
distance to the color entities of the other sets. Through this idea,
photoconsistency of v is defined as in Equation 6. The distance
between two color sets is given in Equation 7.
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The most important benefit of using Minkowsky distance as a
photoconsistency measure is the following. During the photocon-
sistency check, if the voxel is found to be inconsistent, there is no
need to continue to check photoconsistency of that voxel. That
means, having found a pair of colors whose difference is greater
or equal to the threshold, voxel cannot be photoconsistent.

3.4 Histogram

In order to get rid of thresholds, Slabaugh et al (Slabaugh et al.,
2004) proposed a new photoconsistency measure based on color
histogram. Photoconsistency check is performed in two steps:
histogram construction and histogram intersection. In the first
step, visible pixels of the voxel v are extracted and a color a his-
togram is constructed for each image. Next step is photoconsis-
tency check. To check whether v is photoconsistent or not, all
pairs of histograms of v have to be compared: Two views 7 and j
of v are photoconsistent with each other, if their histograms H,,
and H,, match. A matching function, match(H.,,, H.; ), which
compares two histograms, and returns a similarity value should
be defined. Then the decision about the photoconsistency v is
made according to the measure given in Equation 8.

true,

false,

consistent(v) = { Zz’fiézﬂﬁcj(m“ Hy;) #0 }
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The advantage of histogram based photoconsistency measure is
that there is no need for a preset threshold. Furthermore, paired
tests can be very efficient in some circumstances. For instance, if
the voxel is found to be inconsistent for a pair, there is no need to
test other pairs of views for photoconsistency.



3.5 Color Caching

Color caching is a photoconsistency measure proposed by Chhabra
et al. (Chhabra, 2001). It brings a solution to the limitations
caused by Lambertian assumption. Photoconsistency of a voxel
is checked twice before it is removed: If a voxel is found in-
consistent in the first step, it is passed to the second step for an-
other check. At the first step, surface parts which show Lamber-
tian reflectance properties are tested. Those surface parts which
fail Lambertian assumptions for some reason (material proper-
ties, viewing orientation, position of the light sources, etc.) are
tested at the second step. The irradiance from these parts can
be inconsistent. In order to prevent carving of these parts, before
carving a voxel, it should be checked with another measure which
takes care of viewing orientation. Given an image, for each voxel
v, a cache is constructed. Each cache holds the visible colors of
v from the relevant image. Having constructed color caches for
each image, these caches are checked to find out, if there is a sim-
ilar or a common color in all pairs of caches. If there is a match
between all pairs of caches, v is labeled as consistent. If there is
any pair of views whose caches do not contain a similar or a com-
mon color, v is labeled as inconsistent. Chhabra (Chhabra, 2001)
defines similarity measure between two colors ¢; = (R;, Gy, B;)
and ¢; = (Rj, Gj, Bj) as in Equation 9, and similarity of two
images I; and I; as in Equation 10.

A <m
otherwise
©

Aij = /(Ri = R;j)? + (Bi — B;)? + (B: — B))?

similarity(ci, c;) = { Y;"T:ZE;

similarity(I;, I;) =
acl Ecache; 3cm Ecache; Similarity(cly C7n)
otherwise

true,
false,
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So, the photoconsistency of voxel v is defined as in Equation 11.

V,,jconsistent(1;, I;)
otherwise

true,

consistent(v) = { False

an

4 COMPARISON

In order to compare photoconsistency measures, one should be
able to measure quantitatively the quality of the reconstructed
models. In this study, similarity between captured and rendered
images of model is used to obtain a quantitative quality measure.
The images are compared using root-mean-square-error (RMSE)
and normalized cross-correlation-ratio (NCCR). Definitions of
these measures are given in Equations 12 and 13, where M and N
are the image dimensions, and G is the maximum intensity value.

M,N
1
RMSE(A,B) = ——— Ay — Bij)? (12
M,N
NCCR(A,B) =1— Lij AuBy (13)
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5 EXPERIMENTAL RESULTS

Photoconsistency measures are tested using 3 objects: ‘“‘cup”,
“star”, and “box”. Voxel space resolution is set to 450 x 450 x 450
for all objects. Its handle makes the ‘“‘cup” object hard to model.
Furthermore, the available texture information is not adequate to
obtain good results. The image sequence consists of 18 images,
16 of which are used for reconstruction and 2 for testing. Recon-
structed models are shown in Figure 1 and measured quality of
the reconstruction is tabulated in Table 1 and Table 2. There is
no significant difference between the reconstructed models quan-
titatively. Qualitative results support this result. Histogram based
photoconsistency measure would be the best choice for this im-
age sequence, since there is no need for threshold tuning in this
approach.

(a) (b)
© (d
(e ()

Figure 1: (a) Original image, and artificially rendered images of
“cup” object obtained using (b) standard deviation, (c) histogram,
(d) adaptive threshold, (e) L1 norm, and (f) color caching.

Image No Measure NCCR (%) | RMSE (%)
standard deviation 2.96 10.24
histogram 2.95 10.22
08 adaptive threshold 2.95 10.22
L1 norm 3.00 10.31
color caching 2.95 10.21
standard deviation 1.68 7.99
histogram 1.69 8.04
17 adaptive threshold 1.68 8.00
L1 norm 1.86 8.43
color caching 1.67 7.97

Table 1: Error analysis using test images for “cup” object.



Measure NCCR (%) | RMSE (%)
standard deviation 1.55 7.37
histogram 1.58 7.45
adaptive threshold 1.55 7.37
L1 norm 1.63 7.56
color caching 1.56 7.38

Table 2: Average error for “cup” object.

In order to test the photoconsistency measures on an object with
a simple geometry, “box” object is used. 12 images are taken
around the object and all of them are used during the reconstruc-
tion. In Figure 2 the result obtained using L1 norm as photocon-
sistency measure is illustrated. Measured quality of the recon-
struction is tabulated in Table 3. Rather than its quantitative re-
sults, the visual quality of the reconstructed model gives a clue. It
is about the success of shape-from-photoconsistency approaches
in general: The finer the voxel space, the better is the reconstruc-
tion and the more is the computational complexity.

(a) (b)

Figure 2: (a) Original image, and (b) artificially rendered image
of “box” object obtained using L norm.

Measure NCCR (%) | RMSFE (%)
standard deviation 2.15 10.73
histogram 2.17 10.85
adaptive threshold 2.09 10.57
L1 norm 2.15 10.70
color caching 2.09 10.61

Table 3: Average error for “box” object.

“star” object is a good example of objects that has not texture
information but a complex geometry. The image sequence for
this object consists of 18 images, 9 of which are used for recon-
struction and 9 for testing. Reconstructed models are shown in
Figure 3 and measured quality of the reconstruction is tabulated
in Table 4. Adaptive threshold seem to produce a better result
than the others. Selecting low values for the thresholds causes
overcarving. On the other hand, the higher is the threshold, the
coarser is the reconstructed model. There is a high dependency
on selecting proper thresholds for poor-textured objects. There is
no need for a threshold in histogram-based method. However, in
this case, lack of texture information causes some voxels not to
be carved. Uncarved voxels have the color blue, i. e. the back-
ground color. Similar effect is also observed when color caching
is used as photoconsistency measure.

6 CONCLUSIONS

A framework for the comparison of photoconsistency measures
used in voxel coloring algorithm is described. Reconstruction
results of 3 objects, which are obtained using generalized voxel
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Figure 3: (a) Original image, and artificially rendered images of
“star”” object obtained using (b) standard deviation, (c) histogram,
(d) adaptive threshold, (e) L1 norm, and (f) color caching.

Measure NCCR (%) | RMSE (%)
standard deviation 0.85 6.39
histogram 0.91 6.54
adaptive threshold 0.74 5.89
L1 norm 0.85 6.35
color caching 0.86 6.40

Table 4: Average error for “star” object.

coloring algorithm are discussed. The methods, in which thresh-
olds are used, generally give the best results, if suitable thresholds
are set. Better thresholds can be found empirically. Standard de-
viation gives appropriate results for the voxels, which are at the
edges on the images or which are projected onto highly-textured
regions of the images. Using adaptive thresholds, the threshold is
changed according to the position of the voxel. But this change
is controlled by another threshold, which is actually the bottle-
neck of the approach. The second threshold prevents carving
voxels which are at the edge or highly-textured. When the sec-
ond threshold is not a suitable value, it might generate cusps in
the final model. When objects to be modeled are highly-textured,
it is better to use histogram-based photoconsistency measure. In
this approach, there is no need for a threshold. Minkowsky dis-
tance does not have a specific benefit as a photoconsistency mea-
sure. However, Minkowsky distance is a monotonically increas-
ing function. So, if the color set is found to be inconsistent from
some views, then there is no need to check the visible pixels from
other views. This speeds the computation up. Color caching is
an appropriate photoconsistency measures to eliminate the high-
lights. However, it is also possible to eliminate the specularities
using background surface and selected lighting.
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ABSTRACT

An image-based 3D surface reconstruction technique based on simultaneous evaluation of reflectance and polarisation features is
introduced in this paper. The proposed technique is suitable for single and multi-image (photopolarimetric stereo) analysis. It is
especially suited for the difficult task of 3D reconstruction of rough metallic surfaces with non-Lambertian reflectance. The reflectance
and polarisation properties are used to determine the surface gradients individually for each image pixel. The presented multi-image
technique is invariant to variations of the surface albedo. We evaluate our algorithm based on synthetic ground truth data as well as on
a raw forged iron surface. The results we obtain for the real world example demonstrate the applicability of our method in the domain
of industrial quality inspection.

1 INTRODUCTION In this paper we present an image-based method for 3D surface
reconstruction by simultaneous evaluation of information about

Three-dimensional reconstruction of surfaces has become an inggﬂectance and polarisation. This method will be applied relying

; . ; X o . 0n a pair of polarisation images of the surface (photopolarimetric
portant technique in the context of industrial quality inspection. : L : .
: : . stereo). Itis assumed that the scene is illuminated by unpolarised
In the field of optical metrology, the currently most widely used

active approaches are primarily basedbesjection of structured point light sources situated at known locations. The reflectance
light (Batlle et al., 1998). While SUCC'Ohmml ethods are accurateand polarisation properties of the surface material are measured

thev require a highlv precise mutual calibration of cameras am§>ver a wide range of surface orientations by evaluating a series of
y req gnly p images acquired through a linear polarisation filter under differ-

structured light sources. Multlple structured light sources may b%nt rotation angles, respectively. Parameterised phenomenologi-
needed for 3D reconstruction of non-convex surfaces. Hence, for | models will then be fitted to the obtained h
inline quality inspection of industrial part surfaces, less intricate_ o, MOC€S Wi then € 'tt.e to the obtaine measurements.. Bot

assive image-based techniaues are desirable ' reflectance and polarisation features are used to determine the
P 9 q ) surface gradient individually for each image pixel, without intro-

) ) _ ducing global constraints like smoothness (d’Angelo arihidr,
A well-known passive image-based surface reconstructionggs).

method isshape from shading. This approach aims at deriving

the orientation of the surface at each pixel by using a model of\le systematically evaluate our method on a synthetically gen-
the reflectance properties of the surface and knowledge about thgated surface in order to examine its accuracy, convergence be-
illumination conditions (Horn and Brooks, 1989). The integra- haviour, and noise-robustness. We furthermore investigate the
tion of shadow information into the shape from shading formal-accuracy of our 3D reconstruction technique for the real-world
ism and applications of such methods in the context of fast inlineexample of a raw forged iron surface.

quality inspection have been demonstrated(Wér and Hafezi,

2005).
) 2 REFLECTANCE AND POLARISATION MODELS

A further approach to reveal the 3D shape of a surface is to utilisg
polarisation data. Most current literature concentrates on dielec-

tric surfaces, as for smooth dielectric surfaces, the direction antlihe pixel intensityl (u, v) observed by a camera is governed by
degree of polarisation as a function of surface orientation are gov; ’

erned by elementary physical laws (Miyazaki et al., 2004). Forthereflectance functionf the surface material,
smooth dielectric surfaces a 3D surface reconstruction framework I(u,v) = R (fi(u,v),5,7), 1)

is proposed relying on the analysis of the polarisation state of re-

flected light, the surface texture, and the locations of specular reyhich depends on the surface norriathe illumination direction
flections (Miyazaki et al., 2003). In previous work, reflectancez, and the directior to the camera. We assume that both light
and polarisation properties of metallic surfaces are examinedsource and camera are situated at infinite distance from the object,
but no physically motivated polarisation model is derived (Wolff, such thats and are assumed to be constant. In the following,
1991). Furthermore, it has been demonstrated that polarisatiafie surface normai will be represented imradient spaceby
information can be used to determine surface orientation (Rahhe directional derivativep = z, andq = z, of the surface
mann and Canterakis, 2001). Applications of ssisape from po-  function z(z, y) with @ = (—p, —q, 1)*. We define accordingly
larisationapproaches to real-world scenarios, however, are rarely — (—ps, —qs, 1)T and@ = (—p,, —qv, 1) in gradient space.
described in the literature. A variational combined shape from

shading and polarisation algorithm relying on the minimisationA well-known special case is the Lambertian reflectance func-
of a global error function is introduced in (d’Angelo anddWer,  tion R (7, §) = p(u,v) cos8; with cos8; = 7 - §/ (|7||5]) and
2005) and applied to 3D reconstruction of metallic surfaces.  p(u,v) as thesurface albedoln this paper, however, we regard

1 Measurement of reflectance properties
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Figure 1: (a) Plot of the three reflectance components. (b) Definition afidhiel coordinate system and the azimuth angle

such that our phenomenological reflectance model only depends
on the incidence anglé;, the emission anglé., and the phase
anglea. Note thato < 6; + 6. in the general three-dimensional
case. Foid,. > 90° only the diffuse component is considered.
The albedop is assumed to be constant over the surface. The
shapes of the specular components of the reflectance function are
approximated byV = 2 terms proportional to powers abs 6,..
The coefficients{c,, } denote the strength of the specular com-
ponents relative to the diffuse component, while the parameters
{m., } denote their widths. All introduced phenomenological pa-
rameters generally depend on the phase angl&or our mea-
surements we use a goniometer to adjust the artjlesd 6..

0, The phase angla between the vectorgandv is assumed to be

0, constant over the image.

reflectance

Figure 2: Left: Measured reflectance of a raw forged iron sur+or each configuration dof;, 6., anda, we acquire a high dy-
face fora = 75°. The parameters of the reflectance function namic range image by combining several images taken with dif-
(cf. Eq. 2) amount tor; = 3.85, m1 = 2.61, 02 = 9.61, and  ferent shutter times. The reflectance of the sample surface under
ma = 15.8, where the specular lobe is describeddayandm:  the given illumination conditions is then obtained by computing
and the specular spike ly andms. the average greyvalue over an area in the high dynamic range im-
age that contains a flat part of the sample surface. A reflectance

] ] ] measurement typical for raw forged or cast iron surfaces is shown
metallic surfaces with a strongly non-Lambertian reflectance bey, Fig. 2 fora = 75°.

haviour. We will assume that the reflectance of a typical rough

metallic surface consists of three components: a diffuse (Lam2.2 Measurement of polarisation properties

bertian) component, thepecular lobe and thespecular spike

(Nayar et al., 1991). The diffuse component is generated by inth our scenario, the incident light is unpolarised. For smooth
ternal multiple scattering processes. The specular lobe, which ietallic surfaces the light remains unpolarised after reflection at
caused by single reflection at the surface, is distributed around tHée surface. Rough metallic surfaces, however, partially polarise
specular direction and may be rather broad. The specular spike ige reflected light (Wolff, 1991). The measurement of the polari-
concentrated in a small region around the specular direction angation properties of the surface is similar to the reflectance mea-
represents mirror-like reflection, which is dominant in the casesurement. For each configuration of goniometer angles, five high
of smooth surfaces. Fig. 1a illustrates the three components gfynamic range images are acquired through a linear polarisation
the reflectance function. We define an analytical form for the refilter at multiple orientation angles betweer0® and180°. For
flectance for which we perform a least-mean-squares fit to theach filter orientatiow, an average pixel intensity over an image
measured reflectance values, depending on the incidence angléea containing a flat part of the sample surface is computed as
6;, the angled,. between the specular directighand the view-  described in Section 2.1. To the measured pixel intensities we fit
ing directiond (cf. Fig. 1a), and the phase anglebetween the a sinusoidal function (Wolff, 1991) of the form

vectorss andv:
3 v I(w) = I. + I, cos(w — D). 4

N
R(0;,0,,0) = p |cos0; + ZU" (cos0)™ | . (2) The filter orientation® for which maximum intensity. + I, is
observed corresponds to tpelarisation angle(w = ®). The
polarisation degreeamounts toD = I, /I.. In principle, three
The angled,. can be expressed in terms of incidence angle, emismeasurements would be sufficient to determine the three parame-

n=1

sion angle, and phase angle according to tersI., I,,, and®, but the fit becomes less noise-sensitive and thus
more accurate when more measurements are used. The parameter
cos 0, = 2cos; cosf. — cos ?3) 1. represents the reflectance of the surface.
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Figure 3: Measured and modelled polarisation properties of a raw forged iron surface. Left: polarisation angle. Right: polarisation
degree.

According to Fig. 1b, the rotation angles of the goniometer definesurface acquired under different illumination conditions. These
the surface normak = (—p, —g, 1) of the sample surface in a methods aim at determining the surface gradient field, which is
coordinate system with positive and zeroy component of the then integrated in order to obtain the deptlu, v). In this sec-
illumination vectors, corresponding tp, < 0 andgs = 0. With-  tion we will extend this approach by introducing polarisation in-
out loss of generality we will in the following assume a viewing formation.

direction# = (0,0,1)”. The surface normat in the world co- ) o

ordinate system, in which the azimuth angle of the light sourcel he reflectance funptlon as well as polarisation gngle and degree
is denoted by the angle, is related tor by a rotationR. (/) can be expressed in terms of the surface gradigfitsv) and

around the: axis, leading to q(u,v):
p = pcost+gsing I(u,v) = R(p(u,v),q(u,v)) 8
§ = —psiny+qcosi. ®) P(u,v) = Re (p(u,v),q(u,v)) ©)
Due to the lack of an accurate physically motivated model for the D(u,v) = Rp (p(u,v),q(u,v)) (10)

polarisation properties of rough metallic surfaces, we perform a ) ) )
polynomial fit in terms of the surface gradienisandg to the ~ The representation oft in Eq. (8) is calledreflectance map
measured values of the polarisation arlend degred. Inthis ~ (Horn and Brooks, 1989). Provided that the model parameters

framework, the modelled polarisation angte is represented by ~ Of the reflectance and polarisation functidiisRs, and Rp are
an incomplete third-degree polynomial of the form known and measurements of intensity and polarisation proper-

o . . . 3 ties are available for each image pixel, the surface gradients

Ro (P, q) = as +bep+ cag+dep G+esq .  (6)  andg can be obtained by solving the nonlinear system of equa-
The constant offset.s can be made zero by correspondingly tions (8)—(10). For this purpose we make use fo the Levenberg-
defining the zero position of the orientation anglef the lin- Marquardt algorithm in the overdetermlned case and the quell
ear polarisation filter. Eq. (6) is antisymmetricgrwith respect dogleg method (Powell, 1970) c_)therW|se._ In the overdetermined
to as. At the same timeRs(p,§) = as = const for § = 0, case, the root of Egs. (8)-(_10) is determined in the least-mean-
corresponding to coplanar vectotss, and. These properties Sduares sense. The. contributions from the different terms. are
are required for geometrical symmetry reasons as long as the ithen weighted according to the measurement errors, respectively,

i . B .
teraction between the incident light and the surface material cafyhich we have determined toy = 107" [spec With spec as the
be assumed to be isotropic. intensity of the specular reflectionse = 0.2° andop = 0.01.

The surface profile:(u, v) is derived from the resulting gradi-
The observed polarisation degr&g is represented in an analo- entsp(u, v) andg(u, v) by means of numerical integration of the
gous manner by an incomplete second-degree polynomial of thgradient field (Jiang and Bunke, 1997).
form
Rp(p,§) = ap + bpp + cop? + dpg-. @ It is straightforward to extend this approach to photopolarimet-
In this case, symmetry ig is imposed for geometrical reasons, ric stereo because each light source provides an additional set of

once more due to the assumed isotropy of light-surface interaduations. Eq. (8) can only be solved, however, when the sur-

tion. Fig. 3 illustrates the polarisation properties of a raw forgedface albedg(u, v) is known for each s_urfa_ce point. .A constant
iron surface at a phase angle@f= 75° along with the polyno- albedo can be assumed in many applications. If this assumption
mial fits according to Eqgs. (6) and (7). is not valid, albedo variations will affect the accuracy of surface

reconstruction.
3 3D SURFACE RECONSTRUCTION USING For surfaces with unknown and non-uniform albedo it is possible
REFLECTANCE AND POLARISATION to utilise two images acquired under different illumination condi-

tions, such that Eq. (8) can be replaced by
Well-known approaches to reflectance-based 3D surface recon-

struction areshape from shadingndphotometric stereahe lat- I Ry (p(u,v),q(u,v))
ter term referring to the evaluation of multiple images of the L R (p(w,0), q(w,0)) (11)
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Figure 4: 3D reconstruction of a synthetically generated surface basadbatopolarimetric stereo image pair. (a) Ground truth.

(b) From the left: Reflectance, polarisation angle and degree images, without and with non-uniform albedo, without and with noise,
respectively (cf. Table 1). The second polarisation angle image and both polarisation degree images have been excluded from the
analysis (cf. Section 4.1). Reconstruction result for noisy images of a surface with uniform albedo is shown in (¢) using the albedo-
dependent approach according to Eq. (8) and in (d) using the albedo-independent approach according to Eq. (11). Reconstruction
results for a surface with non-uniform albedo in the noise-free case is shown in (e) for the albedo-dependent and in (f) for the albedo-
independent approach.

In Eq. (11), the albedo cancels out. The quotient approach habhe synthetic reflectance and polarisation angle images shown in
been introduced in the context of photoclinometric analysis ofFig. 4b have been generated by means of the polynomial fits to
planetary surfaces (McEwen, 1985) and has been integrated intbe measured reflectance and polarisation properties presented in
the shape from shading formalism Mer and Hafezi, 2005). Figs. 2 and 3. We have used two synthetic surfaces for an eval-

. ) uation of our reconstruction method, one surface with uniform
An advantage of the described local approach is that the 3D reynedo and one with spatially non-uniform albedo. In our ex-

construction result is not affected by additional constraints S”C%eriments we have found that the behaviour of the polarisation
as smoothness of the surface but directly yields the surface gradiegree of rough metallic surfaces tends to change significantly
ent field for each image pixel. A drawback, however, is the faclyer the surface, due to local variations of the surface roughness
the}tdue to the mhereqt nonlinearity of the problem, existence an?d'AngeIo and Whler, 2005). In contrast, the behaviour of the

uniqueness of a solution ferandq are not guaranteed for both 5|arisation angle does not show local variations over the surface.

the albedo-dependent and the albedo-independent case. Butyjfg thys decided not to make use of the polarisation degree in our
the experiments presented in Section 4 we show that in praCtbracticaI experiments (cf. Section 4.2).

cally relevant scenarios a reasonable solution for the surface gra-
dient field and the resulting deptifu, v) is obtained even in the - According to Fig. 3, the observed polarisation angles cover only a

presence of noise. narrow interval. Hence, we have observed that the azimuth angle
1) must be known at an accuracy of ab@ut® if one desires
4 EXPERIMENTAL RESULTS to use both polarisation angle images for reconstruction, while
the reflectance is less sensitive in this respect. As such accurate
4.1 Evaluation based on synthetic ground truth data knowledge ofy is difficult to obtain for practical reasons, we

decided to use only one polarisation angle image.
To examine the accuracy of 3D reconstruction, we apply the al-

gorithm described in Section 3 to the synthetically generated sufFhe reconstruction results are shown in Fig. 4. The noise level
face shown in Fig. 4a. We still assume a perpendicular view oramounts td5 times the measurement errors given in Section 3.
the surface along theaxis, corresponding 8 = (0,0,1)”. The  The corresponding RMS deviations from the ground truthzfor
scene is illuminated by. = 2 light sources (one after the other) p, andq are given in Table 1. We have observed that for a signifi-
under an angle of5° with respect to the horizontal plane at az- cant fraction of pixels (abo@5 percent) no solution of Egs. (8)—
imuth angles ofp® = 0° andy® = 90°, respectively. This (9) is obtained with the applied initialisation, presumably due to a
setting results in identical phase angtés) = o? = 75° for small convergence radius. When Eq. (8) is replaced by Eq. (11),
the two light sources. The initial values fpfu, v) andq(u, v) convergence is achieved for all pixels, leading to much higher
must be provided relying on a-priori knowledge about the surfaceccuracy of reconstruction. We have found experimentally that
orientation. In the synthetic surface example, they are initialisedt is possible to decrease the reconstruction error obtained from
with the value—0.5. It has been demonstrated that the initial gra- Eq. (8) by decreasing the weight of the reflectance in the least-
dients can be estimated using depth from defocus (d’Angelo anthean-squares optimisation. As seen from the RMS errey thie
Wohler, 2005). guotient-based approach according to Eq. (11) yields the same re-
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Table 1: Evaluation results on the synthetic ground truth example shown ih #ing both reflectance images but only one polarisation
angle image.

Method Albedo ‘ RMS error (without noise) RMS error (with noise)
z p q z p q

I, 15,9, uniform 3.2 0.20 0.18 3.2 0.20 0.19

I11,I5,®, non-uniform | 4.1  0.25 0.24 4.1 0.26 0.24

I/ 15,9, uniform 0.4 0.10 0.00 0.8 0.24 0.16

I, /I>,®, | non-uniform| 0.4 0.10 0.00 0.8 0.24 0.17

Table 2: Evalutation results on synthetic ground truth data using various combinations of all available reflectance and polarisation data.

Method Albedo RMS error (without noise)) RMS error (with noise)
z P q z P q
I,®1 uniform 0.7 0.15 0.01 1.3 0.19 0.16
1,91 non-uniform | 1.5 0.21 0.04 1.5 0.22 0.16
I,D: uniform 0.5 0.01 0.11 9.1 0.85 1.10
11,Dq non-uniform | 2.5 0.11 0.42 7.7 0.82 1.17
®,,D, uniform 0.0 0.00 0.00 4.0 1.10 0.29
®d1,D4 non-uniform | 0.0 0.00 0.00 40 1.10 0.29
I,,®1,D; uniform 0.5 0.13 0.01 1.4 0.22 0.16
I,®1,D, non-uniform | 1.4 0.20 0.04 1.3 0.24 0.16
1,1 uniform 3.6 0.26 0.26 3.6 0.27 0.27
1,15 non-uniform | 4.1  0.33 0.33 4.1 0.32 0.31
I1,15,D1,P2 uniform 27 017 0.17 2.8 0.18 0.18
I,,I5,®1,D, non-uniform | 4.0 0.25 0.25 4.0 0.24 0.24
I1,12,D1,Ds uniform 3.6 0.21 0.21 3.6 0.21 0.21
11,15,D1,D5 non-uniform | 4.1 0.26 0.26 4.1 0.26 0.26
I1,15,91,92,D1,D- uniform 2.7 0.17 0.17 2.7 0.18 0.17
I,I,91,92,D1,D2 | non-uniform | 4.0 0.25 0.25 4.0 0.24 0.24
I /13,91,P: uniform 0.0 0.00 0.00 0.2 0.12 0.12
I/ I2,91,D2 non-uniform | 0.0 0.00 0.00 0.2 0.12 0.12
I /15,91,92,D1,D2 uniform 0.0 0.00 0.00 0.2 0.12 0.11
I, /13,91,92,D1,D2 | non-uniform | 0.0 0.00 0.00 0.2 0.2 0.12

sultsfor the surfaces with uniform and non-uniform albedo, while ing the forging process. The offset between the two surfaces at
the error increases when Eq. (8), assuming a uniform albedo, the margin of the part amounts ®05 + 0.05 mm along the
used. surface normal, obtained by tactile measurement with a sliding
calliper at the points indicated by the arrows in Fig. 5b. The 3D
For comparison, we report in Table 2 the reconstruction accuracgeconstruction yields a value @1 mm (Fig. 5¢), which is in
obtained using various combinations of all available reflectancegood agreement. A cross-section of the same surface was mea-
and polarisation data, including the polarisation degree. The vakured with a laser focus profilometer and compared to the corre-
ues are computed both for a single set and for a pair of reflectanaghonding cross-section extracted from the reconstructed 3D pro-
and polarisation images, respectively. We have found that a paffle (Fig. 5d). The RMS deviation amounts to 0.22 mm, corre-
of intensity images alone is not sufficient for reasonably accusponding to about two-thirds of a pixel.
rate 3D surface reconstruction. With both reflectance and polar-
isation angle images, the reconstruction results become virtually
exact when Eq. (11) is used. Even with a single light source we 5 SUMMARY AND CONCLUSION
obtain good reconstruction results when all available reflectance
and polarisation data are used. In this paper we have presented an image-based method for
3D surface reconstruction relying on the simultaneous evalua-
4.2 Application to a rough metallic surface tion of reflectance and polarisation information for multiple im-
ages (photopolarimetric stereo). The reflectance and polarisation
We will now describe the application of our photopolarimetric 3D properties of the surface material have been obtained by means
reconstruction method to the raw forged iron surface of an autoef a series of images acquired through a linear polarisation filter
motive part. Image resolution was 0.30 mm per pixel. For eactunder different orientations. Analytic phenomenological mod-
pixel, the polarisation properties are determined as described iels have been fitted to the obtained measurements, allowing for
Section 2. The 3D reconstruction resuli;, v) along with the re-  an integration of both reflectance and polarisation features into a
flectance and polarisation images is shown in Fig. 5 for a flawlessnified local (pixel-wise) optimisation framework. The presented
and a deformed part, respectively. As discussed in Section 4..method has been evaluated based on a synthetically generated
the reconstruction is based on the quotiént/, of the two re-  surface. The dependence of the accuracy of 3D reconstruction on
flectance images and one polarisation angle image. The surfatiee utilised reflectance and polarisation data is systematically ex-
gradient(u, v) andg(u, v) are initialised with zero values. The amined. Furthermore we have applied our method to the difficult
difference between the two surfaces shows that some material ieal-world scenario of 3D reconstruction of a surface section of a
missing in the deformed part. This is due to a fault caused durraw forged iron part. We have shown that our approach is suitable
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Figure 5: Application of the described 3D surface reconstruction methadaw forged iron surface. (a) Reflectance and polarisation

angle images. The red boxes indicate the reconstructed area. (b) Reconstructed 3D profiles of both parts, viewed from the upper right.
(c) DifferenceAz between flawless and deformed surface. (d) Comparison of the cross-section indicated by the dashed line in (a) to
ground truth.
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ABSTRACT

This paper aims at evaluating multi-camera configurations as a function of the descriptive parameters of complex biological objects.
Multi-baseline Stereo has potential to handle projective distortion at large baselines. Being close to the observed object and the
orientation of object surfaces pointing toward the camera increagedjeetion distortion. An example is 3D reconstruction of plants

where the leaves can be pointing steeply toward the cameras, while, sub-leaf reconstruction needs high depth resolution, because the
leaves overlap closely to each other. The paper presents a new dissimilarity measure, called Sums of Individual Sums of Squared
Differences (SISSD). It takes projection distortion and changing specular highlights into account by learning the gradual changing of
the feature window. The method was included in the comparative study that used realistic ray traced plant models, where the descriptive
parameters of the objects could be controlled. Other configurations in the experiment were the commonly used Multi-baseline Sum of
the Sums of Squared Differences (SSSD), the popular binocular graph cuts, and two trinocular correlation techniques. Comparison is
in regard to leaf type, texture and orientation, proportion of occlusion and proportion of changing highlights by computing the overall-,
occluded-, and highlighted- percentage of bad matching pixétag, pbmpoce, andpbmppigr). The results showed a complicated
relationship of trade-offs that points toward further development combining the strengths of the individual configurations.

1 INTRODUCTION leaves can be pointing steeply toward the cameras and it needs
high depth resolution because the leaves overlap closely to each

Computer vision based 3D reconstruction of close-up complexther. Excellent depth maps has potential to aid the segmenta-
biological structures is a difficult discipline. There are varioustion of individual leaves (Lee et al., 1996), if the disparity maps
multi-camera configurations to choose from. It would be useful tchave trustworthy discontinuity edges. This is useful in preci-
learn about the performance related to descriptive parameters sfon agriculture for segmenting individual leaves for autonomous
the objects at hand, in order to choose the best configuration. Theeed identification, fruit picking, branch thinning, and for find-
Descriptive parameters of the objects aneface shape, surface  ing sampling points on specific locations of a plant (Christensen
orientation, presence of texture, proportion of changing specular and Jgrgensen, 2003, )(Nielsen et al., 2004). The image acquisi-
highlight and proportion of occlusion. The specular highlights tion is expected to be done from a moving platform in an outdoor
in concern are those that changes gradually from one image tenvironment, so reconstruction must be done from a single time
the next across the baseline. Multi-baseline Stereo has been ddice.
scribed and tested in literature as a method for improving the han- .
dling of occlusion and ambiguity across the scan lines (Okutom n ggneral terms pllants. belong to. t.he class of Obj.eCtS Fhat are.
and Kanade, 1993)(Jeon et al., 2001) by using the sum of tha€mitransparent, biological, non-rigid structures. Disparities are
energy measures across the camera array; e.g. Sum of Sums0fE" non-planar_and can get vedyep _toward the cameras. Tex-
Squared Difference (SSSD). Attempts have also been made res are npn-gmstent or highly detailed, and having more or less
dealing with specular highlights by actively detecting specuIaISpeCUIar hlgh_llghts. . F_ortunately, they are se_gments .Of. smooth
highlights within the algorithm (Li et al., 2002) and treating them surfaces, but intertwining and overlapping. It is very difficult to

as occlusions. However, the problems related to nearby objec%et dense ground truth. The Vision based depth map reconstruc-

are overlooked as the algorithms assume that the area looks t gn Is usually confined to_ fronto-planar depth scenes, Where _the
same in all cameras. This paper presents an alternative meas th maps can be.descrlbed asregions of near-equal d|§p.ar|t|.es.
that utilizes the fact that a multi baseline array consists of subset: ese scenes are viewed from a distance and have small finite dis-

of smaller baselines. A large baseline improves depth resolutioﬂa”r:y;pacesi wher_e itis reasonzbl_lehto mar;)ually atleC}wre grounld
but it also makes the correspondence more difficult (Okutomi an Ut -Asan alternative, strgcture '9 tca.n. € used. tuses mul-
Kanade, 1993). Three factors increase this effect: Being close t%ple Images so that the objects must be rigid in time (Scharstein
the observed object, window correlation size, and orientation of’md Szeliski, 2003).

object surfaces.

2 METHODSAND MATERIAL
Precision agriculture is a field with rising interest in 3D computer

vision, which is becoming tangible as new high dynamic rangeThe stereo correspondence algorithms were all based on a basic
cameras and precalibrated multi-view cameras are being deveSum of Squared Difference (SSD) dissimilarity (energy) function
oped. These cameras satisfy the epipolar geometry constraintsq. 1). The presented methods assumes precalibrated images

and the intrinsic- and extrinsic calibration can be skipped. Closesatisfying epipolar geometry constraints, equal baseline, and zero

up 3D reconstruction of plants is an excellent example where theotation.
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d is the tested disparity}’ is the window around«, y), I; is the

ith image. The windows can be placed in various ways around
the pixel and question, but we limited this experiment to centered
windows. Adding multiple windows can improve the correspon-

dence near disparity borders (Fusiello et al., 2000), but we wanted @)

Fo keep this factpr out of th(_a experlmen_t thl_s time. It was shown SSSD: 017 SISSD: 0.05
in another experiment that five symmetric windows were optimal, 02r

ie. the center and the four diagonals (Nielsen et al., 2005). o gggD

In the classical multi baseline SSSD the Sum of Squared Differ-
ence between the reference camera andttheamera is com-

z
puted forN cameras. See equation 2. z
.g
N
. d(c—1)
d) = Eic(z,y, ——= 2
S(x,y,d) argmdm;( L@y, 1) @
0l 1‘5 2 2‘5 3 3‘5 4
We see that the binocular cas¥ (= 2) is a special case of this ' Baseline '
equation. (b)
X Best SSD: 330 Best SSSD: 330 Best SISSD: 336 GT: 335
2.1 Introducing SISSD 140p 5
A new measure Sum of Individual Sums of Squared Differences o
is defined as SISSD (see equation 3). This measure was supposed 1001
to learn the graduate change in the feature window across the £ ol
baseline. This could be a problem with occlusions as it would E
learn the feature of the occluding object, which was countered g 6or
by including the weighted dissimilarity in regard to the reference w0l
camera. In the new measure we computed the Sum of Squared
Difference between the— 1th and theith camera, and between 201
the 1st and theith camera to ensure that it does not adapt to a 0 ‘ ‘ ‘ ‘
completely different object. 200 250 Disparity 80 400
al d(c—1) ©
S(z,y,d) = arg mdinZ[oe(chl,c(@y, ~N_1 ) _ o _
c=2 - Figurel: The case of steep leaves where projection changes ori-
dle —1 entation across the baseline. (a) five views of the location on
(c=1)
+(1 = a)(Brel@,y, =) () the steep leaf. (b) The development of the dissimilarity across

the baseline. (c) The dissimilarity/energy function across the
We see that SSSD is a special case of SISSD, whete 0.0. scan line in the image. The best match for SSD, SSSD, SISSD
Figure 1 shows an example of the case with steep object whefgy = 1), and ground truth (GT) is given over the graph.
the projection distorts the orientation of the leaf. The top shows
parts of images of a five camera array. The middle plot the develthe second switches the disparity to the y-axis. Their baselines
opment of the dissimilarity (energy) across increasing baselineare equal to the largest multi baseline (Imagg
It is obvious that SSSD increases exponentially, while SISSD
is even less than SSD. The bottom plot shows the dissimilarity T (x,y, d) = arg min min(E1, ~, (z,y, d), E1,~, (y, z, d))
for the three measures across the scan line and prints the best ¢ )
match for SSD, SSSD, SISSD and Ground Truth (GT). This trait 7 (3 v d) = argmin(Ey v, (z,y, d) + Ein, (y,z,d)) (5)
should also be an advantage in the presence of specular highlights d
that travel across the baseline. An example is shown in figure 2.
Based on these preliminary results, a benchmark experiment was theory thel’,, should comparably be more robust to occlusions
performed. The goal was to validate that SISSD performed bettapy choosing the best match in a single image pdit. should
than SSSD on steep-leaved objects and in areas where the speomparably be more certain of a match if the point is visible in
ular highlight state changes, and whether the reference similaritgill cameras by choosing the best match where both image pairs
constraint could counter the occlusion problem. are good matches.

2.2 Comparative Methods One of the best 3D reconstruction algorithms available uses a
graph cut energy minimization, which yields similar results to
The other common multi-camera alternative to the multi baselinghe slower simulated annealing. The difference is that graph cuts
camera array is called the right-angled trinocular L-setup (Mulli-preserves depth discontinuity (Kolmogorov and Zabih, 2002). It
gan and Daniilidis, 2002). Two different trinocular algorithms are does not rely on window sizes which tend to dilate the depth re-
used for comparison, trinocular minimuffif eq. 4) and trinocu- gions and are sensitive to perspective distortion. The main ad-
lar sum (s eq. 5). In principle, they use two image pairs, wherejustable parameter is the impact of the smoothness constikaint,

64



(Scharstein and Szeliski, 2002):

PBMP = % > lds(z,y) = der(z,y)| > 6 (6)

(z,y)

2.3 Experimental Setup

(a) The experimental tests were conducted in order to learn more
about the algorithms in the complex context of close-up recon-
struction of complex structures. Hence, near-photo realistic ray
traced scenes of plants were used in order to control the scene
parameters and get valid ground truth disparity maps, occlusion
masks, and highlight masks. The scenes had natural outdoor
lighting and focal blur, which is a natural problem with plants
with steep leaves. Blur is unavoidable, because the aperture can-
not be very small and the shutter must be fast when capturing
images from a moving platform and the plants are waving in the
wind.

SSSD: 3.44 SISSD: 0.49

w
o

w

Dissimilarity
= N
ol N o

i

0.5F

Two main classes of plants, long leaf (grass-like, e.g. cereal) and
1 15 2 25 & 35 4 broad leaf (e.g. beet and tomato) were generated. This relates
Baseline to surface shape. For each of these there were plants with steep
(b) leaves and flat leaves, respectively. This relatesittace orien-
Best SSD: 277 Best SSSD: 278 Best SISSD: 272 GT: 271 tation. Steep leaves compared to flat leaves have less highlight,
more occlusion, and vice versa. A natural case with two grassy
plants with flat and steep leaves and a lot of occlusion were used,
too. Each scene was generated with textured (spotted) and no tex-
ture (glossy), both having bump maps. This relateprasence
of texture. Finally, all images very generated with and without
specularity. This served two purposes; 1. it was required to find
the highlight masks (where highlights exist in one frame and not
the other), and 2. in order to test overall performance of the algo-
rithms and the same geometrical structure with and without the
presence of highlights. There were 18 image sets in total. See

20 240 20 260 270 280 290 figure 3 for an example with ground truth.
isparity

(©

Dissimilarity
S (4] o

w

Figure2: The case of flat leaves where the highlight changing
across the baseline. The potential weakness of SISSD is that the
dissimilarity difference between the correct match and its sur-
roundings is not very pronounced. This makes the global mini-
mum sensitive to jitter.

Since it assumes regions of equal depth, it excels at fronto-planar

scenes, but may have trouble when it comes to steep leaves on :
' y P ?—rl]gure 3: A natural case, where two grass-like plants are close

fr:?snasxuccgﬁ::; \I/tvgv 32;?;:;?'0”990:gv,sseﬁng?:r'nlénpgifgrr]rg??hg}ogetherand leaves are occluded. The proportion of occluded
) . o . . o 0
graph cut algorithm (Kolmogorov and Zabih, 2002) that is re_plxels is 5% and the proportion of changing highlights are 5%.

ferred to askzl. This is only a binocular algorithm which used
the 1st and theNth camera.\ was given a small value (half of 3 RESULTSAND DISCUSSION
the automatic setting).
The overall results are shown in table 1. It is the mean and
There are three common quality metrics root-mean-square, repr@pread of performance over all plant types. Note that the ground
jection/prediction of a novel view(Szeliski and Zabih, 1999), andtruth maps were calculated in floating points as to represent the
percentage of bad matching pixels. The latter is chosen becausgecaled) inverse of the real height. The disparity maps were inte-
the focus is to generate correct disparity maps. Root-mean-squager pixels. If the ground truth had been rounded, the values would
error does not ensure that the structure and discontinuities are preave been 10-20% lowelM ultiz.q., Used the same cameras as
served. Reprojection error does not measure the actual disparity/ultis.q.,, but skipped camera 2 and 4.
error, butwhether the reprojection of one green pixel happen to
hit a matching green pixel in the novel view. However, in a scene The table shows that having those two extra cameras in between
full of green plants that is very likely even if the disparity is very the three cameras did improve the result by 11% in average for
wrong. all pixels, 8% for highlighted pixels, and 8% for occluded pix-
els. Meanwhile, their spread was approximately equal or slightly
The estimated disparity mags; were compared to ground truth narrower (for occluded pixels). The significance of 8.9% versus
(deT) using the Percentage of Bad Matching Pixels metrics as ir8.2% is up to the application to decide. The development within
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Table 1: Comparison of Stereo setups. Mean PBMP (%) anc» ” 0 ‘
their standard deviations calculated from all pixels (all), pixels * © °
with different specularity state (high), and occluded pixels (occ). s ® ’
Stereo Setup All High Occ 25 1
MultisSSSD  8.9(5.9) 22.1(14.6) 50.3(30.9) =
Multiza0.25  8.9(5.6) 20.9(13.7) 55.4(28.7) U .
Multiza0.50  9.9(5.6) 20.6(12.1) 64.6(23.8) - e e
Multiza0.75  13.5(6.6) 23.0(12.2) 69.1(24.0) i e o

MultisSSSD  8.3(5.5) 20.3(13.9) 46.1(28.3)
Multisa0.25  8.2(5.3) 19.4(13.3) 49.9(24.5)
Multisa0.50  8.8(5.4) 19.1(12.7) 55.3(22.5)
Multisa0.75  11.6(6.0) 21.0(12.5) 69.1(20.4)
GraphCut 14.6(8.7) 19.6(16.3) 73.9(24.3)
TrinoMin 10.2(6.5) 23.1(12.5) 30.6(22.3)
TrinoSum 9.8(6.9) 23.6(15.8) 40.3(25.0)

Figure 5: [Left] Log(disparity error) Multi-baseline SSSD and
[Right] SISSDa = 0.5. These results did not have any banding,
but the difference between the SSSD and SISSD was very small.
The result would be excellent if it were combined with a slope-
and discontinuity preserving graph cut minimization.

Figure 6: [Left] Log(disparity error) trinocular minimum £

Figure 4: [Left] Ground truth and [Right] Graph Cuts and|Right] trinocular sum (Z).

Log(disparity error) for steep spotted broad leaf without high-

lights. The banding characteristics were caused by the attemptto ]
impose fronto_p|anar regions on the Steep leaves. ranging from 4-12. The same goes for f|gures 8 and 9 that show

the pbmp of highlight pixels and occlusion pixels, respectively.
multis by increasingilpha was devastating for occluded pixels
by 50%, while overall and highlight pixels reach a local minima Figyre 7 plot (a)(plants without specular highlights) clearly pins
betweena = 0.25 anda = 0.5. The benefit was rather small, gown the sources of error for reconstruction in general. The flat-
though; 1% for all pixels and 5% for highlight pixels. The SISSD |eafed plants (since they had no specular highlights on this plot)
measure may be a improvement when using larger window sizegy| score very well. The errors were large when the leaves were
which tend to be the case when using real images. The trinoculzg;rteep or occluding (the model callégio grassy is 5% occluded

measures did well and they excel at occluded pixels, especially comparison to the steep broad leaf which is only 1%).
T.. Graph cuts did the worst, except at correcting highlight pix-

els by smoothing those areas. Figure 4 shows why graph cuts d"Phe interesting aspect on plot (a) on figure 7 is that it was the

not do Very well. The disparity map was banded, ie. Stalrcas%teep leaves that best improved slightly from SISSD, while the
shaped, instead of smooth.

flat leaves are reconstructed best through SSSD. However, taking

Figure 5 shows the errors from the multi-baseline reconstructiof® 100k at plot (b) reveals that when there were highlight on those
of the same plant. The errors were more recognizable as noidiat leaves, SISSD was an improvement, too, especially for broad
jitter, which could be removed by an energy minimizing sloped!€af plants.

smooth surface technique.

) ) Note also the fact that the steep leaves were troublesome for
Figure 6 shows the errors from trlpocular results for the sam@raph cuts on plot (a) and (c), especially the glossy steep broad
plant. The very steep leaf in the middle and the one to the righfeaf, which was easier for the others compared to grassy plants.
of it are difficult for all the algorithms except trinocular minimum pqt (a) to (d) shows consistently tHEs reconstructed grass-like

(o). Itis so steep that itis almost a self-occlusion. In the secongjants better thaif,,, butT;,, reconstructed broad leaf plant best.
camera the leaf would be extended along orientation of the basers trend is revisited in figure 8.
line, thus occluding the other leafl’,, simply reconstructed it

from the Y direction. The lesson is that it is not only the orlenta-Figure 7 Plot (d) shows that in the more natural case, SSSD and

tion toward the camera that affects the result, but if the orientatior&, were best, even though,, was best in most occluded parts
of a leaf aligns with the baseline it can be difficult to reconstruct,,’ ' P

. - . . T figure 9 plot (a) and (b)). Maybe the algorithm could dynam-
it. This is especially a problem with textureless grass-like IeaveéCally chooseT,, by detecting occlusion with left-right consis-

that aligns with the baseline (Nielsen et al., 2004). In compariy ., < (Fusiello et al., 2000)
son, SISSD was able to reconstruct the steep leaf nearly as goog, y v '

but the leaf to the right of it was as bad as Trinocular sii).( ) )
Figure 8 plot (a) and (b) shows the subtle strength of SISSD in

Figure 7 plots the all-pixel results grouped by descriptive ob-the highlighted areas. The flat glossy broad leaf was the most
ject parameters, i.e. leaf shape, leaf orientation (flat or steegifficult to reconstruct. Note that this is the plant type that was
leaves), texture, and highlights and occlusion. Horizontal axi$0% highlighted, and there were no texture other than shading
is the setup: M 0.0 (SSSD), M 0.25 (SISSD= 0.25), M 0.5, M and bumps to correlate. The graph cut algorithm were particularly
0.75, Binocular Graph Cut, Trinocular Minimuf,, and Trinoc-  bad in this case, because it created non existant surfaces in over
ular sumT’,. The vertical axis is the mean pbmp for window sizesthe plant from the errors of the highlights.
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and overlapping leaves as individual surfaces. charstein, D. and Szeliski, R., 2003. High-accuracy stereo depth
maps using structured light. In: IEEE Computer Society Confer-
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Trinocular minimumT,,, is the best algorithm for occluded ar-

eas.
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