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INTRODUCTION 
 
 
The workshop Towards Benchmarking Automated Calibration, Orientation and Surface Reconstruction from 
Images (BenCOS) of the International Society for Photogrammetry and Remote Sensing (ISPRS) focuses on 
automatic methods for surface reconstruction from images, multi-view stereo, camera (self-) calibration, motion 
estimation and related topics. 

One major aim of the new Commission III on Photogrammetric Computer Vision and Image Analysis is to bring 
together researchers from the related fields, and let them benefit from mutual experience. The Working Groups 
Automatic Calibration and Orientation of Optical Cameras and Surface Reconstruction are co-chaired by 
researchers from the Computer Vision and Photogrammetry communities. 

Apart from being a forum for discussing new scientific results, the major goal of these Working Groups is to 
establish true benchmarks for the performance evaluation of proposed methods. We believe this is a highly 
important aspect of scientific research; it allows an objective comparison of different approaches, catalyzes 
new developments, and eases the access of potential commercial users to these research areas and 
communities. The motivation for this workshop is thus threefold: 

• communication of new scientific results in the related areas,  
• bringing together researchers from different communities, and 
• working towards the definition of benchmarks. 

The workshop proceedings include the ten presented papers. Reviewing was carried out in a double-blind 
process by leading international researchers of the Computer Vision and Photogrammetry areas. Each full 
paper has been reviewed by 3 members of the Program Committee. 

We hope that all workshop participants will leave Beijing with the most rewarding memories in the scientific, 
technical and social aspects, and that those unable to attend will find the proceedings a valuable source of 
information. 

 
 

Olaf Hellwich 
Ilkka Niini 

Camillo Ressl 
Volker Rodehorst 
Daniel Scharstein  

Peter Sturm 
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AUTOMATIC IMAGE SEQUENCE REGISTRATION BASED ON A LINEAR SOLUTION 
AND SCALE INVARIANT KEYPOINT MATCHING  
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ABSTRACT: 
 
Automatic registration of image sequences has been a subject of research for many years, both in the photogrammetric and computer 
vision communities. As part of the automation, linear orientation methods are used to obtain approximations for a subsequent bundle 
adjustment solution. Linear solutions can be at time "too general" particularly in a sense that they mostly employ uncalibrated cameras, a 
fact leading to severely unstable results in most photogrammetric problems such as the case for the direct linear transformation (DLT) in a 
nearly flat terrain. Furthermore, to the best of our knowledge, none of them handle more than two or three images simultaneously without 
imposing several theoretical constraints that cannot be guaranteed in practical imaging missions. In this paper a sub-optimal linear 
solution for the exterior orientation parameters of image sequences is developed. The proposed method is demonstrated on an aerial 
image strip. The paper shows that the method successfully generates reliable and accurate approximations both for the orientation 
parameters as well as for tie point coordinates. For an automatic extraction of the latter, the Scale Invariant Feature Transform (SIFT) 
algorithm is applied. 

 
1. INTRODUCTION 

 
It is commonly accepted both in photogrammetry and computer 
vision communities that bundle adjustment is a "golden 
standard" method for recovering exterior orientation parameters 
from image sequences (Hartley et al., 2001). A bundle 
adjustment process requires, however, good initial values for all 
the six exterior parameter, as well as approximations for the 3D 
coordinates of the tie points. To avoid the need for 
approximations, a great deal of effort has been put on 
developing general algorithms that provide linear solutions to a 
variety of orientation problems (see e.g., Hartley et al.,2001; 
Rother and Carlsson, 2001; Carlsson and Weinshall, 1998). 
Many of them address a general problem in which the entire set 
of camera intrinsic (calibration) and extrinsic parameters is 
unknown. These solutions are stable and perform successfully 
only in cases where no limitations on either the acquisition 
geometry or the underlying object space are present. However, 
for typical photogrammetric problems these solutions have not 
yet proven useful. For example, the solutions proposed by 
Hartley et al. (2001) and Rother and Carlsson (2001) require a 
reference plane across any two images in a sequence. Carlson-
Weinshall duality algorithm (1998) requires a specific number 
of points in a given number of images. Fitizgibbon and 
Zisserman (1998) offer the use of the trifocal-tensor in a close 
or open sequence. The trifocal-tensor does not suit, however, 
the photogrammetric process because of its requirement for tie 
points to appear in three sequential images. In the standard 
photogrammetric process, with 60 percent overlap between 
images, applying this model will relate to only 20 percent of 
each image. Furthermore, most of the works do not refer to the 
global exterior orientation parameters and produce only a 
relative solution. Pollefeys et. al (2002a) offer a solution that is 

based on sequentially linking and reconstructing image after 
image, which is then followed by a bundle adjustment.  

In this paper a framework for an automated photogrammetric 
solution is presented. Our objectives are reducing the operator 
input to a minimum and eliminating the reliance on initial 
values for the computation of the exterior orientation 
parameters. The proposed solution requires neither knowing the 
order of the images nor their overlapping percentage. The only 
external information required is the ground control points and 
their corresponding image points. Solutions that follow a similar 
line can be found in Nistér et al. (2004) where a sequence of 
video frames is oriented and in Oliensis (1997) where an 
iterative solution for weak motion (short baselines) image 
sequences is presented. 

As an outline, our solution detects first tie points in image pairs. 
For this purpose the SIFT strategy (Lowe, 2004; Lowe 1999) is 
used as described in Section 2. Following the autonomous 
extraction of the tie point, comes the geometric computation. 
The proposed geometric framework is founded on the Essential 
matrix (Hartley and Zisserman, 2003). The Essential matrix 
between every image pair is calculated and the five relative 
orientation parameters are extracted. The geometric concept of 
the pose estimation and the scene reconstruction are given in 
Section 3. Section 4 presents experimental results and Section 5 
concludes the paper. 
 

2. EXTRACTION OF CORRESPONDING POINTS  
 
The Scale Invariant Feature Transform - SIFT (Lowe, 2004; 
Lowe 1999) is a methodology for finding corresponding points 
in a set of images. The method designed to be invariant to scale, 

5



rotation, and illumination. Lowe (2004) outlines the 
methodology as consisting of the following four steps:  
1. Scale-space extrema detection – using the difference of 

Gaussian (DoG), potential interest points are detected.  
2. Localization – detected candidate points are being probed 

further. Keypoints are evaluated by fitting an analytical 
model (mostly in the form of parabola) to determine their 
location and scale, and are then tested by a set of 
conditions. Most of them aim guaranteeing the stability of 
the selected points.  

3. Orientation assignment – orientation is assigned to each 
keypoint based on the image local gradient. To ensure scale 
and orientation invariance, a transformation (in the form of 
rotation and scale) is applied on the image keypoint area. 

4. Keypoint descriptor – for each detected keypoint a 
descriptor, which is invariant to scale, rotation and changes 
in illumination, is generated. The descriptor is based on 
orientation histograms in the appropriate scale. Each 
descriptor consists of 128 values. 

With the completion of the keypoint detection (in which 
descriptors are created) the matching process between images 
begins. Matching is carried out between the descriptors, so the 
original image content is not considered here. Generally, for a 
given keypoint, matching can be carried with respect to all the 
extracted keypoints from all images. A minimum Euclidian 
distance between descriptors will then lead to finding the 
correspondence. However, matching in this exhaustive manner 
can be computationally expensive (i.e., O(N2) with N the 
number of keypoints). Common indexing schemes cannot be 
applied to improve the search here because of the descriptors 
dimensionality. However, an indexing paradigm, called Best 
Bin First (BBF), is proposed by Beis and Lowe, (1997). The 
BBF algorithm reduces the search to a limited number of the 
most significant descriptors values and then tries locating the 
closest neighbor with high probability. Compared to the 
exhaustive matching, this approach improves the performance 
by up to two orders of magnitude, while difference between the 
amount of matched points is small. Our proposed solution 
follows Schaffalitzky and Zisserman (2002) and Brown and 
Lowe (2003) where all key points from all images are organized 
in one K-d tree. Once a set of matching points has been 
generated, another filtering process is applied. This process is 
based on the RANSAC algorithm (Fischler and Bolles, 1981). 
The fundamental matrix of the image pairs is calculated and 
points that do not satisfy the geometric relation are filtered out 
as outliers. Based on the matching, the order of images within 
the image sequence is determined. When applying the SIFT 
method for aerial images the huge image size may lead to the 
extraction of numerous keypoints. Excess of information is 
valuable for redundancy; however, it comes with high 
computational cost. Experiments show, however, that even 
downscaling the aerial image resolution satisfying amount of 
keypoints has been provided. In comparative research presented 
by Mikolajczk and Schmid (2003) the SIFT method has shown 
superiority over classical methods for interest point detection 
and matching. 
 
Figure 1 shows the matched keypoints on an extract of two 
overlapping aerial images. Generally, the algorithm extracted 
~4000 keypoints per image, out of them 339 points were 
matched with less than 5 pixels offset between corresponding 
points. 146 keypoints have satisfied the geometric model with 

less than 1 pixel between corresponding points. It is noted that 
seven points are needed for computing the Fundamental matrix. 
Experiments on different images with different characteristics 
(e.g., vegetation, urban scenes) exhibited similar results.   
 

 
Figure 1. Matched keypoints in an aerial image pair extract 

 
3. THE GEOMETRIC FRAMEWORK 

 
The input for the geometric process is a set of matched points 
for all overlapping images. In addition, the Ground Control 
Points (GCPs) and their corresponding image points are 
provided. The solution considers the intrinsic parameters to be 
known. The process consists of two main steps: first is finding 
the relative orientation between all image pairs in the sequence. 
The second is a simultaneous computation of a transformation 
that takes into account the relative orientations and optionally 
the control points. This step is performed linearly as a single 
optimization process. 
 
3.1 Relative Orientation  
 
The first step is the linear computation of the Essential matrix 
for each of the overlapping image pairs. The minimum number 
of required tie points ranges between five (Nistér, 2004; Philip, 
1996) to seven (Hartley, 1997).  
Extraction of the rotation and translation parameters from the 
Essential matrix can be carried out as proposed by Hartley and 
Zisserman (2003). We begin with a singular value decomposing 
of the Essential matrix: E=UDVT where U and V are chosen 
such that det(U)>0 and det(V)>0. Assuming that the first 
camera matrix is P = [I | 0], the second camera matrix can be 
one of four possible choices:  
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A reconstructed point X will be in front of both cameras only in 
one of the four possible solutions. Thus, testing with a single 
point to determine if it is in front of both cameras is sufficient 
for the choice between the four possible solutions of P’ (Hartley 
and Zisserman, 2003). To fine-tune the relative orientation 
parameters, a non-linear geometric optimization can now take 
place. 

An important issue to account for is the degeneracy of the 
Essential matrix which arises in the following cases (Torr et al., 
1999): 

1. All points and camera centers laying on quadratic 
surface (e.g., cone, cylinder). 

2. There is no translation between the images.  
3. All tie points lie on the same plane in object space. 

Cases (1) and (2) are also a degeneracy of the bundle 
adjustment algorithm. Cases (2) and (3) are more common. For 
these cases there is a simpler geometrical model – the 
Homography. From a Homography one can retrieve the relative 
orientation parameters as proposed by (Tsai et al., 1982). To 
choose between the Essential matrix and the Homography, Torr 
et al. (1999) proposes a measure they call Geometric Robust 
Information Criterion (GRIC) that computes scores to the 
fitness of the geometrical model for a given dataset. This 
measure is also used by Pollefeys et al. (2002b). An alternative 
way to avoid the degeneracy as in case (3) is using the five 
point algorithm (Philip, 1996; Nistér, 2004). However, then a 
tenth degree polynomial must be solved.  
 
3.2 Global Registration  
 
Following the computation of the relative orientation 
parameters, we are provided with two camera matrices for each 
image - one, which is fixed (when the image is the first in the 
pair) and the other, which is relative (when the image is the 
second). The first and the last images have only one camera 
matrix. The task of concatenating the relative orientation 
parameters into one global model is divided into two subtasks: 
concatenating rotations and concatenating translations. The first 
subtask can be described by a recursion formula: 

i
ii

mi RRR 1
1

+
+ = a   Where 331 ×= IR   (1) 

where 1+ii
mR a is the rotation in the m-th model between the 

images i and i+1. Concatenating the camera centers (translation) 
in the sequence (the second subtask) is a more complicated 
process. Here, similarly to the first subtask, there are two 
translation vectors for each image in the sequence (apart of the 
first and last) one is fixed (in the origin) and the other is 
relative. However, in contrast to the rotations, with the 

translation concatenation all vectors are defined up to a scale 
factor only. The scale ambiguity of each vector affects the size 
of the reconstructed scene from each image pair, as Figure 2 
demonstrates. In Figure 2, C1 and C2 are the camera centers of 
the first and the second images. C3 is the actual position of 
image 3, so the scale of the translation vector t23 is correct – the 
scenes reconstructed from images 1, 2 and images 2, 3 fit. 
Contrary to C3, a camera position in C3’ leads to reconstructed 
scenes that differ in scale. The recursion formula of the 
translation concatenation should, therefore, have the form of: 
 

1
1

+
+ += ii

mmii tstt a   Where Tt ]0,0,0[1 =       (2) 
 

sm and tm are the scale factor and the translation vector of the m- 
model between images i and i+1.  
 

 
Figure 2. Influence of the translation scale factor on the 
reconstructed scene. 
 
For solving all the translation scale factors together with the tie 
point coordinates we now develop a simultaneous and linear 
solution. The solution is derived from the camera matrix, P that 
fulfills the relation x=PX, with X the coordinate vector of a 
point in object space, and x is the image coordinate vector. Both 
are given in homogenous coordinates (the last term of X and x 
is set to 1). P may be decomposed into: 

 
]|[ tIKRP −=    (3) 

 
with K is the camera calibration matrix and I a 3x3 identity 
matrix. By substituting (1) and (2) into (3) a recursion formula 
for the P matrices can be written as 

][ 11
1 sttIRRKP ii

mii
ii

mi ⋅+⋅⋅= +→+→
+  

leading when inserted into the x=PX relation to 
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As K and Ri are known i∀ , they are of no interest. We, 
therefore, rewrite Equation (4) as follows  
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with xKRx 1)(ˆ −= . Equation (5) provides a linear form for 
the estimation of the point coordinates, X, Y, and Z, and the 
scale s. Notice that with this model a point is reconstructed from 
all its instantiations in all images. Each image point contributes 
two independent equations. There is still one ambiguity left, 
namely the scale of the first model. This ambiguity is solved by 
the absolute orientation (into the object space reference frame). 
Generally, for each of the components (i.e., tie points and 
camera matrices) one has to find a similarity transformation, 
Xw=HsXm, to the object space reference frame via the GCPs, 
with Hs of the form: 
 









=

λTs

tR
H

0
   (6) 

 
and λ as the model scale. Linear solutions to this problem have 
been offered by several authors, e.g., a quaternion based 
solution (Horn, 1987), orthogonal matrices (Horn et al., 1988) 
and the Rodriguez matrix (Pozzoli and Mussio, 2003).  
 
An approach that simultaneously integrates the solution for the 
scale parameters, tie point coordinates and the absolute 
orientation parameters is now presented. For a control point that 
appears in an image, it is possible to use equation (7)  

 

Ws XPHx 1−=     (7) 
 
with P as any projection matrix in the model space that acquires 
the point Xw, and Hs given in Equation (6). In a simultaneous 
solution, the scale factor λ in Hs can be replaced by the scale 
factor as given in Equation (2) for the first image pair. Hs 
becomes now an Euclidian transformation with only six 
parameters, where λ = 1. 

 
Substituting Hs

-1 into equation (4) and multiplying both sides by 
(KR)-1 will lead to: 
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Equation (9) provides a linear form for the estimation of the 

scale factors sm, the global translation T̂ and the nine rotation 
matrix terms. In this representation a 3D affine transformation is 
solved. This model requires at least four control points. 
Restricting the solution to a 3D rotation (namely maintaining 
the orthonormality) can be achieved by using the identity matrix 
instead of the singular values in the SVD of R. Using Equation 
(5) for tie points and (9) for control points, we are provided with 
a simultaneous and linear solution. This solution allows having 
the external effect of control points and the internal constrains 
of the tie points weighted in simultaneously. Furthermore, 
control points that appear in only one image can also be taken 
into account. This solution offers an alternative to the two steps 
procedure. However, it is noted that it is not optimal in the sense 
of solving nine parameters explicitly instead of an orthonormal 
rotation matrix. Experiments with this method yield good 
results only under specific configurations. 
 

4. EXPERIMENTAL RESULTS 
 

The proposed method is now investigated using synthetic and 
real data. The sensitivity of the geometric model to additive 
Gaussian noise is tested first, followed by an application of the 
process on a strip consisting of four images. 
 
4.1 Synthetic Data 
 
A synthetic configuration that follows typical mapping-mission 
characteristics was designed with the following parameters, 
flying altitude, 1700 m, terrain variation ranging between 0-
200m, and a focal length of 153 mm. The test set consisted of 
four images in a sequence with 60 percent overlap. The pitch 
and roll angles were in the range of ±2o. For each image pair 
~50 tie points were provided. Six ground control points were 
used. To investigate the sensitivity of the proposed to random 
errors Gaussian noise with zero mean and standard deviation 
ranging between 0.0 and 0.3 mm has been added to image 
coordinates of control and tie points. The maximum standard 
deviation (0.3 mm) is equivalent to an error of 20 pixels for 
scanning resolution of 15µ. 
 
Given this input, fundamental matrices were computed and 
normalized by the known interior camera parameters to form 
the Essential matrix. Then, a decomposition of the Essential 
matrix to the rotation and translation components was carried 
out, followed by up to five (non-linear) iterations to optimize 
the computed R and t values. The transformation into a global 
reference frame was computed using Equations (5) and (6). 
Rodriguez matrices were used to represent rotations. For each 
noise level 100 trials were performed. Results were evaluated 
by three measures: the std. of the 3D Euclidean distance 
between the computed object point coordinates and the actual 
ones, both for tie and control points (Figure 3), the offsets in the 
camera positions, again in terms of std. of the 3D Euclidean 
distances (Figure 4) and the angular error of the three camera 
rotation parameters (Figure 5). Results were compared to 
bundle adjustment solution, as shown in Figures 3-5. The 
experiments show that even in the presence of a severe noise 
reasonable and acceptable solutions can be achieved by the 
proposed geometric model. Indeed, bundle adjustment solution 
performs better than the sub-optimal solution, which is of no 
surprise, but the fact that the results obtained using our method 

8



do not fall too far from the optimal solution makes it a good 
candidate to precede any subsequent optimal solution. Also, the 
deviations in orientation parameters fairly compare with 
accuracies obtained with typical GPS/INS systems. 
Furthermore, under realistic noise level, these results satisfy the 
requirements of some applications – thus avoiding a subsequent 
use of bundle adjustment. 
 
4.2 Real Images  
 
An experiment with a strip consisting of four aerial images with 
flying altitude of 1800 m, and a focal length of 152 mm is now 
presented. Eight GCPs were available for this image set. The 
four images are arranged in an L shape form (see Figure 6); 
their order is not provided as an input. The image coordinates of 
the GCPs were manually digitized. Tie points were generated 
using the SIFT procedure. Globally there were ~1000 matched 
keypoints. About 300 matched points between images with 
similar orientation (image pairs 1-2 and 3-4), and about 60 
matched points for image pair 3-4. Between image triplets about 
10 common points were detected. 
 
To evaluate the quality of the two-steps method the orientations 
were computed first by this procedure only, and then using a 
bundle adjustment solution. For the bundle adjustment solution 
the parameters originating from the linear procedure were used 
as initial approximations. To evaluate the difference between 
solutions we compare the reconstructed tie point coordinates 
between the two-steps solution and the bundle adjustment. 
Results show that the mean distance between the two methods is 
0.33 m. However, the accuracy estimate of the points achieved 
by the bundle adjustment procedure is about ±1 m. This 
difference is within the uncertainty range of the tie points 
coordinates. These results are in agreement with those achieved 
by the synthetic data experiments in Section 4.1 and indicate 
that the proposed method can be used as an independent 
solution when achieving high level of accuracy is not a concern 
and also as an initial values generator for a bundle adjustment 
solution. 
 

5. SUMMARY AND CONCLUTIONS 
 
Recent years have seen a significant progress made in 
automation of registration processes. At the same time advances 
have been made in the field of multi-view geometry. This paper 
has demonstrated the integration of these two disciplines. No 
assumptions on the order of the image sequence have been 
made to execute the proposed linear solution for estimating the 
camera parameters. Experiments made have demonstrated 
robustness and stability of the proposed geometric solution even 
to severe noise levels. Those with real data showed that even 
with non-standard image configuration a full automation can be 
achieved. 
 

 
Figure 3. Mean error of the reconstructed points. The X-axis is 
the noise level in millimeters and the Y-axis represent the 
ground error (distance) in meters. The error bars represent ± 2σ 
of the accuracy range as resulted from the trials for each noise 
level. 
 

 
Figure 4. Mean error of the reconstructed image positions 
parameters. The X-axis is the noise level [mm] and the Y-axis 
represents the image positions error (distance) [m]. The error 
bars represent ± 2σ of the accuracy range as resulted from the 
trials for each noise level.  
 

 Figure 5. Mean error of the reconstructed camera angles. The 
X-axis is the noise level in mm and the Y-axis represent the 
angular error [o]. The error bars represent ± 2σ of the accuracy 
range as resulted from the trials for each noise level 
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Figure 6. Outline of the aerial image arrangement used for the 
experiment. Triangles depict control points. 
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ABSTRACT

In this paper we propose a strategy for the orientation and auto-calibration of wide-baseline image sequences. Our
particular contribution lies in demonstrating, that by means of robust least-squares adjustment in the form of bundle
adjustment as well as least-squares matching (LSM), one can obtain highly precise and reliable results. To deal with large
image sizes, we make use of image pyramids. We do not need approximate values, neither for orientation nor calibration,
because we use direct solutions and robust algorithms, particularly fundamental matricesF, trifocal tensorsT , random
sample consensus (RANSAC), and auto-calibration based on the image of the dual absolute quadric. We describe our
strategy from end to end, and demonstrate its potential by means of examples, showing also one way for evaluation. The
latter is based on imaging a cylindrical object (advertisement column), taking the last to be the first image, but without
employing the closedness constraint. We finally summarize our findings and point to further directions of research.

1 INTRODUCTION

(Hartley and Zisserman, 2000) has transformed the art of
producing a Euclidean model from basically nothing into
text-book knowledge. As can be seen from recent exam-
ples such as (Nistér, 2004, Pollefeys et al., 2004, Lhuillier
and Quan, 2005) a very high level has been reached.

We also head into this direction, making it possible to gen-
erate a Euclidean three-dimensional (3D) relative model
(no scale, translation, and rotation known, i.e., seven de-
grees of freedoms undefined) from not much more than
the images and the knowledge, that the images are per-
spective and sufficiently overlapping. Besides the latter,
we make two in many practical cases reasonable assump-
tions, namely, that the camera is not too strongly (below
about 15�) rotated around its optical axis between consec-
utive images and that all images are taken with one set of
calibration (interior) parameters. The latter has to be true
only approximately. While we cannot deal with zooming,
we found empirically, that we can handle focusing.

The strategy, that we propose, particularly focuses on ro-
bust least-squares adjustment (Mikhail et al., 2001) in
the form of bundle adjustment and least-squares matching
(LSM). By means of affine LSM, we obtain highly precise
conjugate points. Together with bundle adjustment, which
we use for the computation of every fundamental matrixF
as well as trifocal tensorT , and after linking triplets via 3D
projective transformation, we obtain highly precise and at
the same time reliable solutions. This is demonstrated by
means of two examples, in one of which a cylindrical ob-
ject (advertisement column) was imaged with 28 images.
Even though the information, that for the last image the
first has been taken, has not been used in the adjustment,
the cylinder is preserved very well.

Basically, our strategy rests on extracting points which we
match highly precisely with LSM (cf. Section 2). Section
3 explains how hypothesis for conjugate points undergo
rigorous geometric checks by projective reconstruction via

computingF andT , robustified by means of random sam-
ple consensus (RANSAC), as well as linking triplets via
3D projective transformation. All, including intermediate
results of projective reconstruction are improved via robust
bundle adjustment, important issues for which we explain
in Section 4. As we deal with images of several Mega pix-
els, we employ image pyramids including tracking points
via LSM through the pyramid (cf. Section 5). The pro-
jective reconstruction is upgraded to Euclidean via auto-
calibration, described in Section 6. In Section 7 we demon-
strate the potential of our strategy, particularly the high ge-
ometric precision and reliability achievable by means of
LSM and bundle adjustment by means of an experiment
specifically designed to evaluate the precision of the 3D
reconstruction. Finally, we present a summary and direc-
tions for further research.

2 POINT EXTRACTION AND LEAST-SQUARES
MATCHING

We start by extracting F̈orstner (F̈orstner and G̈ulch, 1987)
points. An even distribution of the conjugate points on the
image is enforced if possible by regional non-maximum
suppression in the reference image of a particular matching
step. No suppression is employed in the other images, be-
cause due to noise and occlusions the regionally strongest
points in two images do not have to be the conjugate points.

Contrary to most approaches, we do not use the coordi-
nates of the points for the conjugate points directly, but we
determine relative coordinates by selecting one image and
determining the relative shift of image patches around the
points in the other images via LSM. This has the big ad-
vantage, that we obtain an estimate of the precision of the
match.

To be able to deal with large baseline scenarios, we use as
search space the size of the image. This naturally leads to
a large number of hypotheses. As LSM is computational
expensive, we first sort out unlikely candidates for conju-
gate points by means of normalized cross correlation. We
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particularly have found that correlating in red, green, and
blue and combining the outcome by means of multiplica-
tion is a good choice for making use of color information.
We employ a relatively low threshold of0:73 to keep most
of the correct points. Experiments with color spaces have
not been successful as we found the color information to
be mostly noisy, leading to bad correlation in the chromi-
nance, etc., band.

As color information has already been used, we do not
make use of it for LSM. For it, we employ affine geo-
metric transformation, because the parameters for a projec-
tive transformation cannot be reliably determined for im-
age patches in the range of11 � 11 pixels. Additionally
to the the six affine geometric parameters, we determine a
bias and a drift (contrast) parameter for the brightness. For
two images we just match the second to the first. For three
and more images we determine an average image in the
geometry of the reference image. Matching against it, we
avoid the bias by a radiometrically badly selected reference
image (e.g., distorted by occlusion).

The result of this step are highly precise image coordinates
for the conjugate points including an estimate of the pre-
cision. This value is mostly over optimistic (one often ob-
tains standard deviations in the range of one hundredth of a
pixel), but they still give a good hint on the relative quality
of the solution obtained.

3 ROBUST PROJECTIVE RECONSTRUCTION

The conjugate points of the preceding section are input for
projective reconstruction. Basically, the goal is reconstruc-
tion of the whole sequence. Because of the inherent noise
and due to problems with similar and repeating structures
as well as occlusions, the strategy needs to be rather robust,
and at the same time efficient.

We have decided to use triplets as the basic building block
of our strategy. This is due to the fact, that by means of
the intersection of three image rays one can sort out wrong
matches, i.e., outliers, highly reliably. Opposed to this,
one cannot check the depth for image pairs, as the only
constraint is, that a point has to lie on the epipolar line.
Even though using triplets as basic building block, com-
binatorics suggests to actually start with image pairs, re-
stricting the search space via epipolar lines. For the ac-
tual estimation of the relations of pairs and triplets we em-
ploy F andT (Hartley and Zisserman, 2003). Triplets are
computed sequentially and are linked by means of project-
ing points of the preceding triplet via the newT into the
new last image resulting into (n+1)-fold points as well as
computing the projection matrix of the last image via 3D
projective transformation for the first and second but last
images. (Projection matrices forF andT can be obtained
with the standard algorithms explained in (Hartley and Zis-
serman, 2003).) Finally, points not yet seen are added.

Of extreme importance for the feasibility of our strategy is
the use of robust means, particularly RANSAC (Fischler
and Bolles, 1981), that we use for the computation ofF

and T . As we are dealing with a relatively large num-
ber of outliers in the range of up to 80%, RANSAC be-
comes especially for the computation ofT extremely slow.
This is mostly due to the fact, that for reliably estimating
T , it is necessary to compute a point-wise bundle adjust-
ment. We use a modified version of RANSAC speeding up
the computation by more than one order of magnitude for
high noise levels, where as shown in (Tordoff and Murray,
2002), often much larger numbers of iterations are needed
to obtain a correct result than predicted by the standard for-
mula given in (Hartley and Zisserman, 2003).

4 ROBUST BUNDLE ADJUSTMENT

Bundle adjustment is at the core of our strategy. We have
found, that only by adjusting virtually all results, we ob-
tain a high precision, but also reliability. The latter stems
from the fact, that by enforcing highly precise results for a
large number of points, one can guarantee with a very high
likelihood, that the solution is not random.

Basically this means, that when estimatingF andT , we
compute the optimum RANSAC solution for junks of sev-
eral hundreds of iterations and then we run a projective
bundle adjustment on it. This is done a larger number of
times (we have found empirically five to be the minimum
number), as the bundle adjustment solution is partly much
better than the RANSAC solution and its result can vary a
lot. But having several instances of bundle solutions, there
is nearly always one which is sufficiently precise and rep-
resenting the correct solution.

We employ projective as well as Euclidean bundle adjust-
ment, both including radial distortionds = 1:+ k2 � (r

2�
r2
0
) + k4 � (r

4 � r4
0
) with r the distance of a point to the

principal point (or its estimate) andr0 the distance where
ds is 0. r0 = 0:5 is used as recommended in literature and
empirically verified. We have found by a larger number of
experiments, that it is important to employ radial distortion
only after outlier removal. It is not used at all for the deter-
mination ofF or T , but only after we have tracked down
points to the original image resolution (cf. below).

We originally wanted to employ standard least-squares ad-
justment without Levenberg Marquardt stabilization (Hart-
ley and Zisserman, 2003), to avoid a bias during estima-
tion. Therefore, we are using the SVD-based minimal pa-
rameterization proposed in (Bartoli and Sturm, 2001) for
the first camera for projective bundle adjustment. Yet, we
have found, that only by means of a Levenberg Marquardt
stabilization we can deal with the large initial distortions
of the solution caused by outliers. Particularly, this means,
that we multiply the elements of the diagonal of the normal
equations with1 + stab, the stabilization parameterstab
being adaptively determined by means of varying it with a
factor of 10 between 1.e-5 and 1.

We base the robustness of bundle adjustment on standard-
ized residuals�vi = vi=�vi

involving the standard devia-
tions�vi

of the residuals, i.e., the differences between ob-
served and predicted values. As a first means we employ
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reweighting withwi =
p
2 + �vi2 (McGlone et al., 2004).

Additionally, having obtained a stable solution concerning
reweighting, outliers are characterized by�vi exceeding a
threshold, which we have set to 4, in accordance with the-
oretical derivations and empirical findings, eliminating the
outliers for the next iteration.

For bundle adjustment, efficient solutions are extremely
important. E.g., a 29 image sequence as the one presented
below leads to more than thirty thousand unknowns, mak-
ing straightforward computation impossible. We therefore
follow (Mikhail et al., 2001) and reduce the normal equa-
tions in two steps: First, we reduce the points. Secondly,
we also reduce parameters which are common to all, or at
least sets of images, namely the calibration and / or (ra-
dial) distortion parameters. This results into a tremendous
reduction in computation time and storage requirements,
even when computing also�vi

.

5 HIERARCHICAL PROCESSING VIA
PYRAMIDS

As we deal with relatively large images in the range of 5
Mega pixels or above and we assume at the same time, that
we do not know the percentage or direction of overlap of
the images, only a hierarchical scheme allows for an ade-
quate performance. We particularly compute image pyra-
mids with a reduction factor of2. For the highest level we
found that a size of about100 � 100 pixels is sufficient in
most cases. On this level we computeF. T are computed
on the second highest and for images with a size of more
than1000� 1000 pixels also on the third highest level.

We do not computeT on the fourth highest or lower lev-
els, firstly due to the complexity of the matching and sec-
ondly because already on the second or third highest level
we obtain for most sequences hundredth of points, more
than enough for a stable and precise solution. To still use
the information from the original resolution, we track the
points via LSM down to the original resolution once the
sequence has been oriented completely on the second or
third highest level. This is rather efficient also for images
of several Mega pixels. As reference image we use for ev-
ery point the image, where the point is closest to the center
of the image, assuming that there the perspective distortion
of the patches around the points is minimum on average.
After tracking, a final robust projective bundle adjustment
is employed, at this time including radial distortion.

6 AUTO-CALIBRATION

To proceed from projective to Euclidean space, one needs
to estimate the position of the plane at infinity�1 as well
as the calibration matrix

K =

2
4

c c � s x0
c � (1 +m) y0

1

3
5

with c the principal distance,m the scale factor betweenx-
andy-axis, needed, e.g., for video cameras with rectangu-
lar instead of quadratic pixels,x0 andy0 the coordinates of

the principal point inx- andy-direction, and finallys the
sheer, i.e., the deviation of a90� angle between thex- and
they-axis. The latter can safely be assumed to be zero for
digital cameras.

To computeK and a transform to upgrade our projective to
a Euclidean configuration, we use the approach of Polle-
feys (Pollefeys et al., 2002, Pollefeys et al., 2004). It is
based on the image of the dual absolute quadric

!� � KK> � P
�P>

which is related to the calibration matrix multiplied with
any scalar6= 0 (K) and the dual absolute quadric
�, pro-
jected by the projection matricesP. (Pollefeys et al., 2002,
Pollefeys et al., 2004) employ knowledge about meaning-
ful values and their standard deviations for the parameters
of K to constrain the computation of
� such as, that the
principal distance is one with a standard deviation of nine
and all other parameters are zero with standard deviations
of 0:1 for the principal point andm and0:01 for s. The re-
sult is a transformation matrix from projective to Euclidean
space and oneK for every image.

We have experienced, that the resulting Euclidean config-
uration can be some way off the final result, especially for
longer sequences. I.e., for the sequence of 29 images be-
low, the estimated principal distance, known to be con-
stant, varied between0:3 and3. To avoid this problem,
we have found it to be sufficient to compute the calibration
for the first few images and transform the rest of the se-
quence accordingly. Though this has worked for our exper-
iments, a better way might be to define a number of images
n, say three or five, and compute the calibration, which is
of very low computational complexity, for all subsequent
n images. Finally, the solution should be taken with the
smallest summed up standard deviation of all parameters
for the averageK.

As demonstrated, e.g., by the experiments below, robust
bundle adjustment including radial distortion is an absolute
must after calibration. We start with configurations where
the back projection errors can be in the range of several
hundred pixels. This stems from the fact, that the cali-
bration procedure produces locally varyingK (cf. above).
Using Levenberg Marquardt stabilization, it is possible to
bring down theses large values to fractions of a pixel. In
the beginning the multiplication factor for the elements on
the main diagonal can be as high as two, i.e.,stab = 1.

Because also after projective bundle adjustment there still
can be a large number of outliers, also the strategy for bun-
dle adjustment was found to be very important. This is due
to the fact, that we accepted sound configurations in pro-
jective space, which yet can imply relatively differentK.
Optimizing all parameters of an averageK simultaneously
can lead to initially very wrong values forx0, y0, ands.
It was therefore found to be very important to first opti-
mize onlyc andc � (1 +m), and to optimize the rest of the
parameters only when this adjustment has converged. Op-
timizing c andc � (1 +m) independently makes the whole
procedure less stable on one hand, but allows on the other
hand to check the quality of the result by comparing both.
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7 EXPERIMENTS AND EVALUATION

In this section we report about results for the proposed
strategy and propose one means to evaluate results. All
images used in the experiments shown here have been ac-
quired with the same camera, namely a Sony P100 5 Mega
pixel camera with Zeiss objective using the smallest possi-
ble focal length / principal distance to optimize the geom-
etry of the intersections. To guarantee sharp images (and
to make the experiments more difficult), the camera was
allowed to auto-focus, leading to slightly varying princi-
pal distances. We first present the result for one example
out of tens, namely the scene yard, for which our strat-
egy works reliably using the same set of parameters. I.e.,
one acquires the images, runs the program implementing
the strategy and obtains the result consisting of 3D points,
camera translations and rotations as well as the calibration,
all including standard deviations.

Additionally, we report about one experiment we have de-
vised to evaluate the quality of the solution. For it we ac-
quired 28 images of an advertisement column, which is
close to a perfect cylinder. The images have been taken
walking unconstrained, so there is some flexibility in the
orientation. Though, by always trying to be able to see the
whole width of the column, there was a strong constraint
to actually take the images from positions on a circle.

The scene yard consists of eight images taken in a back-
yard. The first three images and the last image are given in
Figure 1. Figure 2 shows a view on the resulting VRML
model. For the sequence we have obtained 426 threefold
points, i.e., points which could be matched in three im-
ages, 377 fourfold, 228 fivefold, 103 sixfold, and 20 sev-
enfold points resulting in an uncalibrated back projection
error�0 of 0.39 pixels and a�0 of 0.3 pixels after calibra-
tion. Further parameters such as the calibration matrixK
can be found in Table 1.

Figure 2: Visualization of points (red) and cameras (green
pyramids) of model yard

number images 8
�0 projective / Euclidean 0.39 / 0.30 pixel

K
1:247 �0:001 �0:004

1:251 0:0024
1

k2 / k4 (radial distortion) -0.041 / -0.069

Table 1: Results for sequence yard

Of the 28 approximately evenly spaced images of the ad-
vertisement column / cylinder, the first three and the fifth
are shown in Figure 3. Four other images, showing the va-
riety of texture found on the column, are given in Figure
4.

For the evaluation we have devised three experiments. The
first is with the original resolution of2592 � 1944 pixels,
the second with the resolution reduced by a factor of three,
i.e.,864� 648 pixels, and for the last experiment we have
reduced the resolution by a factor of three and the number
of images, wherever there is enough texture, by a factor of
two. I.e., we have taken the first, third, and fifth image,
etc., as shown in Figure 4.

On the original resolution we obtained 2498 threefold,
3387 fourfold, 2559 fivefold, 1085 sixfold, 309 sevenfold,
and 45 eightfold points, as well as one ninefold point re-
sulting in a back projection error of�0 = 0:1 pixels on the
third highest pyramid level and of�0 = 0:29 pixels after
tracking down to the original resolution. Auto-calibration
resulted into estimatedc = 1:04 andc � (1 +m) = 1:05.
The resulting configuration is given in Figure 5 left. The
back projection error has been in the range of 500 pixels
before bundle-adjustment. Bundle adjustment reduced it
to 0:19 pixels. The final result is very close to a perfect
cylinder as proven by Figure 5 right.

Table 2 shows a comparison of the results. They are
rather similar for the original and the reduced resolution
sequence. This suggests, that probably because of the rela-
tively small pixel size of the employed mid-end Sony P 100
consumer camera, the original resolution does not convey
much more information than the reduced resolution. Sim-
ilar findings have been made for other sequences. On the
other hand, the results for the sequence with the reduced
number of images are rather different. This probably stems
from the fact, that the overlap between the images is small
and the view angles on the surface are partly rather large.
For large areas of weak or no texture, such as in image thir-
teen (cf. Figure 4), we even had to use the original configu-
ration. One can see this, e.g., as a hole in the upper right of
the cylinder in Figure 5, right. The comparison of Tables
2 and 1 shows, that even though the time between acquir-
ing the cylinder and the yard sequence was about one year,
all the parameters including the distortion are rather simi-
lar, if enough images were used for the cylinder sequence.
(Please remember, that the same camera has been used.)

For the evaluation of the different versions of the cylinder
sequence, we have taken the first image to be the last image
of the sequence as well. Instead of using this information
in the bundle adjustment, we employ it for evaluation by
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Figure 1: First three images and image eight, i.e., last image, of sequence yard

Figure 3: First three images and fifth image of the original sequence cylinder with 28 images

Figure 4: Images eight, thirteen, eighteen and twenty three of the original sequence cylinder

Figure 5: Result for the original sequence cylinder before (left) and after (right) robust Euclidean bundle adjustment. The
first and the last camera are marked as black and blue and the rest of the cameras as green pyramids. Points are shown in
red.

comparing the parameters of the first and the last camera,
which ideally should be the same. Table 3 gives two dif-
ferent types of descriptions, namely the translation inx-,
y-, andz-direction of the first= last camera in relation to
the radius of the circle constructed by all cameras, as well
as the difference in rotation (this is the rotation angle of an
axis-angle representation), the latter also in terms of a sin-
gle image. One can see, that the difference is rather small
for the original as well as for the sequence with reduced
resolution. Only for the sequence with the reduced num-
ber of images there is a significant reduction of the quality.

8 SUMMARY AND CONCLUSIONS

We have shown, that via least-squares adjustment based
techniques, particularly least-squares matching and bundle
adjustment, highly precise and at the same time reliable
results can be obtained. This has been demonstrated by
means of a cylindrical object, for which it was shown, that
the ring of cameras closes very well and for which at least
visually also the shape is preserved extremely well. By
means of enlarging the distance between the cameras, we
have shown difficulties of the strategy when using a weaker
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original resolution reduced by 3 reduced number images
number images 29 29 22
�0 projective / Euclidean 0.29 / 0.19 pixel 0.12 / 0.08 pixel 0.24 / 0.13 pixel

K
1:239 0:0002 0:002

1:241 0:0001
1

1:242 0:0001 0:003
1:241 �0:0003

1

1:168 �0:0006 �0:0015
1:179 �0:0062

1
k2 / k4 (radial distortion) -0.040 / -0.060 -0.043 / -0.053 -0.041 / -0.069

Table 2: Results for sequence cylinder

original resolution reduced by 3 reduced number images
dx / dy / dz in % of radius circle images 3.5 / -0.36 / 0.74 3.8 / -0.81 / 0.8 7.1 / -1. / 1.1
d� global /d� per image 5� / 0:18� 5:8� / 0:21� 8:7� / 0:41�

Table 3: Differences in translation and rotation of the parameters of the first= last image of sequence circle.dx, dy, and
dz are given in relation to the approximate radius of the circle constructed by the camera positions.

geometry.

A first issue for further research is a more quantitative eval-
uation of the shape of the given object. This could be done
in our case by fitting a cylinder to the object and determin-
ing the distances from this cylinder. Though the object is
not an ideal cylinder, it should be rather close to it.

Calibration is a further issue. Here the approach of (Nistér,
2004) based on the cheirality constraint seems to be ex-
tremely promising. We also still need to deal with planar
parts of the sequence. For this we want to follow (Pollefeys
et al., 2002), though we note that we have found the is-
sue of model selection (homography versusF or T ) rather
tricky.

Finally, an issue that we see as particularly important to
achieve the goal of being able to orient also traditional pho-
togrammetric close range image setups is matching which
is more invariant with respect to strong geometric distor-
tion. For it we find especially (Georgescu and Meer, 2004)
and (Lowe, 2004) very interesting.
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ABSTRACT:

In this paper we explore the relative efficiency of various data-driven sampling techniques for estimating the epipolar ge-
ometry and its global uncertainty. We explore standard fully data-driven methods, specifically the five-point, seven-point,
and eight-point methods. We also explore what we refer to as partially data-driven methods, where in the sampling we
choose some of the parameters deterministically. The goal of these sampling methods is to approximate full search within
a computionally feasible time frame. As a compromise between fully representing posterior likelihood over the space of
fundamental matrices and producing a single estimate, we represent the uncertainty over the space of translation direc-
tions. In contrast to finding a single estimate, representing the posterior likelihood is always a well-posed problem, albeit
an often computionally challenging one. Furthermore, this representation yields an estimate of the global uncertainty,
which may be used for comparison between differing methods.

1 . INTRODUCTION

Estimation of the relative orientation between two images
is an extensively researched subject in computer vision.
Many methods have been proposed and the state of the art
is now quite elaborate and mature. In our view, the main
requirements on an estimation method are that it
• Is accurate (both locally and globally)

• Is robust

• Is computationally efficient

• Can exploit all constraints, exact and approximate

• Gives a truthful uncertainty estimate (local and
global)

It is widely accepted that accuracy is best achieved with it-
erative refinement, called bundle adjustment [24], accord-
ing to a cost function that is derived from a realistic model
of the problem. However, bundle adjustment is dependent
on an initial starting point and only achieves what we refer
to as local accuracy, which is the ability to precisely pin-
point a local minimum of the cost function. Perhaps even
more important and challenging in computer vision is to,
insofar as possible, achieve global accuracy, which is the
ability to reliably locate the global minimum of the cost
function.

Robustness is achieved by using an appropriate data
model that includes data distortions and outliers. Com-
putational efficiency is always desirable, although the re-
quirements are more stringent in some applications than
others. It is likewise desirable to use all available con-
straints, such as camera calibration information.

Figure 1: We derive an uncertainty representation for
epipolar geometry parameterized by the epipole in the first
image. The figure shows an example of the uncertainty
representation when the number of point correspondences
is too low, leading to intricate patterns of probability mass.
The global maximum is circled, but notice the multiple
peaks captured by the representation.

Gauging the uncertainty is important, since without a
notion of how likely it is that the estimate at hand is in
error, it is very hard to take any useful action based upon
it. It is best-practice to gauge local uncertainty around an
estimate by analyzing the local shape of the cost function
around the minimum. However, such an uncertainty mea-
sure only makes sense if the global minimum was truly
found. Moreover, it assumes that the cost function is uni-
modal and nicely behaved. This is seldom the case. Due to
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outliers, noise, the nonlinear nature of the problem, planar
scenes and small translation, the cost function may lack a
clear global minimum or have several throughs of compli-
cated shape.

Therefore, to assess global uncertainty, an estimation
method should ideally provide a representation of the pos-
terior probability distribution over all the regions of pa-
rameter space where the probability is significant.

For strong data, producing a single estimate is possible.
However, there will always be situations with ambiguous
data, in which obtaining a single estimate is essentially an
ill-posed problem. On the other hand, provided we have
selected an appropriate data model, representing the pos-
terior distribution is always a well-posed problem. Repre-
senting the posterior may be computationally difficult, but
it is well-posed for any input data.

Our approach draws upon background material in prob-
abilistic Bayesian frameworks and multiple view geome-
try. Due to space limitations, we by necessity have to as-
sume that the reader has some familiarity with these con-
cepts. The interested reader is referred to [4, 5, 20] for the
former and [6, 9, 15] for the latter.

2 . APPROACH

Ideally, we would like to evaluate the likelihoodp(d|w)
for all possible world statesw to derive our representation
for the posterior distribution. However, it is impractical
to perform full search over a high-dimensional space (in
this case five or more dimensions). Such a complete rep-
resentation would also be unmanageable for a module that
needs to use the results for further computation or decision
making.

To reach an efficient representation of the likelihood,
we will rely on the following observation: If the epipole
in the first image is known, the remaining parameters of
the fundamental matrix (simply rotation in an uncalibrated
setting) are uniquely determined unless all the points from
the point correspondences and the epipole lie on a com-
mon conic in the second image.

Thus it is natural to represent the likelihood with an
explicit representation indexed by the translation direction
(epipole in the first image).

The usefulness of treating the translation and rotation
differently has been understood by many authors and ex-
ploited in different ways, see for example [10, 3, 18, 1].
It is also closely related to the highly popular plane-plus-
parallax approach [11, 14, 21, 23, 13], where one relies
on the existence of a dominant homography and solves for
that in order to guide the search for the translation direc-
tion.

3 . DATA DRIVEN SAMPLING

As argued above, we can not search the likelihood over
the whole parameter space. Several authors have noted
that it can be much more efficient to search the parame-
ter space with data-driven hypothesis generators [2, 25].
We will use hypothesis generation in a similar manner as
in RANSAC [7], where minimal samples of correspon-
dences are randomly chosen from the whole set of corre-
spondences. A minimal sample contains the smallest num-
ber of data points that will determine the geometric rela-
tion up to a finite number of solutions. The samples are
made minimal to minimize the risk of including devastat-
ing outliers. In this case, a minimal sample contains seven
correspondences for the fundamental matrix and five for
the essential matrix. We refer to this as fully data-driven
sampling, since the correspondences ideally should deter-
mine the fundamental matrix. We will also use partially
data-driven sampling, where for a given translation direc-
tion, we take samples containing the smallest number of
correspondences that will determine the remaining param-
eters of the fundamental matrix up to a finite number of
solutions. The samples contain five correspondences to
determine the fundamental matrix in the uncalibrated case
and three correspondences to determine the essential ma-
trix given translation direction in the calibrated case.

4 . REPRESENTATION

If we can derive an accurate representation of the data
likelihoodp(d|w) it can be converted into a representation
of the posterior by multiplying with the prior. The repre-
sentation of the posterior can then support any inferences
we wish to make based on the data.

We consider the world statew to be represented by the
fundamental matrixF and the datad to be represented by
all the point correspondences, denoted byX . Bayes’ rule
then becomes

p(F |X) ∝ p(X |F )p(F ). (1)

We store the hypotheses for the fundamental matrix in a
two-dimensional array indexed by epipole in the first im-
age. Our goal is to find the best fundamental matrix hy-
pothesis for each cell of the array and the integral likeli-
hood in each cell. LetΩ(e) denote the set of all funda-
mental matrices with the epipolee in the first image. The
desired output from our approach is

Fopt(e) =
arg max
F ∈ Ω(e)

p(X |F ) (2)

and

f(e) =

∫
F∈Ω(e)

p(X |F )dF. (3)

for all values of the epipolee. The latter can be computed
by a Laplace approximation around the former.
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Along the lines of our above motivation, it is assumed
that the likelihoodp(X |F ) has a unique narrow peak in
Ω(e). By assuming that the priorp(F ) is smooth in com-
parison to the extent of the peak, the user of the output can
make the approximation

p(e|X)∝

∫
F∈Ω(e)

p(X |F )p(F )dF ≈ p(Fopt(e))f(e). (4)

In a similar manner, most inferences that one may wish
to make based on the data has to do with an integral of
some functiong(F ) times the posterior likelihood. Such
integrals ∫

e

∫
F∈Ω(e)

g(F )p(F |X)dFde (5)

can be approximated as
∫

e
g(Fopt(e))p(Fopt(e))f(e)de∫

e
p(Fopt(e))f(e)de

. (6)

The advantage is that the inferences can be made outside
the relative orientation module with any choice of prior
p(F ) using onlyFopt(e), f(e) and easy two-dimensional
integrals.

If this can be done efficiently and reliably, inferences
can be made in an application-dependent manner based on
the resulting representation, without major alterations to
the core of the computer vision algorithm.

4.1 Prior Likelihood

In the simplest case, the prior likelihoodp(F ) is set to
uniform. In some cases we may have more prior informa-
tion. For example, if we are calibrating a stereo-head, we
typically have approximate knowledge of the location of
the epipole and also of the relative rotation. We may also
work in the uncalibrated setting, but use the prior to put
approximate constraints on the calibration.

4.2 Posterior Likelihood

We use a Sampson approximation (see [9]):

s(x, x′, F )=
(x′⊤Fx)2

(Fx)21 + (Fx)22 + (x′⊤F )21 + (x′⊤F )22
(7)

where the homogeneous coordinates for the points are as-
sumed to be normalized such that their last coordinates
are one. It approximates the squared sum of magnitudes
of the smallest perturbation required to bring the image
point correspondencex ↔ x′ into agreement with the
epipolar geometry described by the fundamental matrix
(x′⊤Fx = 0). This approximation has been found su-
perior to symmetric epipolar distance and other approxi-
mations of similar computational complexity [27].

We model our data likelihood as

p(X |F ) ∝ (

N∏
i=1

σ2(σ2 + s(xi, x
′
i, F ))−1)

N−k

, (8)

whereσ is a scale parameter, which we typically set to
one pixel of a CIF image (352 × 288), N is the number
of point correspondences, and0 ≤ k ≤ 1. We determine
the value ofk experimentally in section 6.4. We have also
tried the standard way of assuming that the reprojection
errors are conditionally independent given the world con-
figuration (k = 0), dogmatically leading to a product of
many independent factors, where each factor is related to a
single point correspondence. However, we have found that
although this produces sensible peak locations of the like-
lihood, it leads to an unrealistically rapid fall-off around
the likelihood peak, resembling a delta-function and not a
realistic model of any practical situation.

5 . HYPOTHESIS GENERATORS

The hypothesis generators we use in our experiments
are:

• 5-Point (Calibrated)

• 7-Point (Uncalibrated)

• 8-Point (Uncalibrated)

• 3-Point+Epipole (Calibrated)

• 5-Point+Epipole (Uncalibrated)

For fully data-driven sampling in the calibrated case,
we use the 5-point method (5pt)[16]. In the uncalibrated
case, we use the 7-point (7pt) method and the 8-point (8pt)
method [9].

The 3-point+epipole (3pt+e) and 5-point+epipole
(5pt+e) methods are partially data-driven generators. The
former was presented in [17]. It uses the point constraints
and the known epipole to restrict the essential matrix to
a 3-dimensional linear space. The calibration constraints
are then added, leading to two conics that are intersected,
which yields four solutions. This method can be carried
out extremely fast in closed form. The latter is related
to a classical result, which is that given five point corre-
spondences, the epipoles correspond by a fifth-degree Cre-
mona mapping, also discussed in [26]. This method gives
a unique solution. It can for example be implemented by
stacking linear constraints from the point correspondences
and the known epipole into an 8×9 matrix, subsequently
extracting the unique nullvector.

6 . EXPERIMENTS

6.1 Construction of the Likelihood Image

To determine the uncertainty of an estimated epipole, we
first computed a quantized posterior likelihood over a
hemisphere of epipoles. The sign of the epipole can only
be determined using cheirality [9], which we do not en-
force. We mapped the hemisphere onto a 300×300 im-
age. In each cell, we computed the optimal fundamen-
tal matrix with translation direction in the cell. In the
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cases of the partially data-driven methods, we determinis-
tically sampled the translation direction over all quantized
translations. In the fully data-driven methods, the transla-
tion direction was determined by the generated hypothe-
sis. We sampled the entire epipolar space, or about 70000
cells, in multiple sweeps, using random sets of point cor-
respondences for each sample. In the partially data-driven
methods, a small perturbation in the translation was added
within each cell to more fully represent possible funda-
mental matrices.

We explored the likelihood images for both synthetic
and real data. In the synthetic case, images with known
relative orientation were created with a scene volume of
random points. The image points were then perturbed with
Gaussian noise equivalent to one pixel of a CIF image.
Finally, outliers were simulated by uniformly scattering
a percentage of the image points in one image. For real
data, we tracked Harris corners, using normalized correla-
tion for matching. The camera was calibrated in order to
compare calibrated and uncalibrated methods.

6.2 Convergence of the Likelihood

We investigated how quickly each method converges to the
likelihood over the entire hemisphere. A straightforward
measure of the error in the estimated likelihood is given
by

error =

∫
e

(p(e) − p̂(e))de, (9)

wherep is the true likelihood and̂p is the estimated likeli-
hood. Ideally, a full search over the space of fundamental
matrices would be used to createp. Since this is infeasi-
ble, we approximated the true likelihood as the maximum
found using all five tested methods in an extremely long
computation. The final image, shown on the top left of
Figure 2, was created with 1000 sweeps, or about7 × 107

samples per method.

Figure 2: Posterior likelihood images of a scene with side-
ways translation over 1000 sweeps of the epipolar space.
From left to right, top to bottom: true likelihood; 3pt+e
method; 5pt+e method; 5pt method; 7pt method; 8pt
method.
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Figure 3: Comparison of convergence rates for the vari-
ous hypothesis generation methods. Hypothesis genera-
tion times are not taken into account.

6.2.1 Comparison of Partially and Fully Data-Driven
Methods

We compared the methods by examining the rate of con-
vergence to the likelihood. Since the uncalibrated meth-
ods create hypotheses from the space of fundamental ma-
trices, while the calibrated methods generate hypotheses
from the more restricted space of essential matrices, the
uncalibrated methods uncover a greater probability mass.
Because we calibrated the image points, the true solution
is an essential matrix, so the mass uncovered by the uncal-
ibrated methods may be overestimated.

We sampled with all methods simultaneously and
recorded the errors. Because several methods produce
multiple solutions, it was important to ensure that the
methods had equivalent numbers of samples. For the
3pt+e and 7pt methods, we disambiguated the solutions by
scoring one additional point correspondence and choosing
the hypothesis with the highest single point likelihood. For
the 5pt method, which may produce up to 10 real solutions
representing extra potentially valid solutions such as pla-
nar ambiguities, we stored the hypotheses and computed
the likelihood of one hypothesis per sampling round.

As seen in Figure 3, the fully data-driven uncalibrated
methods explore the greatest probability mass early in the
computation, while the 5pt+e method slowly converges
to the same value. The calibrated methods converge to
a different posterior likelihood, although the fully data-
driven method again converges faster than the partially
data-driven method.

6.3 Estimation of Confidence Intervals

Once we have the posterior likelihood, we create confi-
dence intervals by finding the global maximum in the pos-
terior likelihood and measuring the fraction of the proba-
bility mass that lies within a certain distance of the max-
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Figure 4: Examples of confidence intervals in an image
sequence with a leftward translation. From left to right
and top to bottom, the respective probability masses within
each circled confidence interval are: 0.865, 0.567, 0.204,
0.065.

imum. That is, we start from a maximal acceptable dis-
tance, which then in turn determines the confidence level.
Typically, we used a distance of 5 degrees on the sphere.
Figure 4 shows examples of confidence intervals in like-
lihood images. The top two images represent cases with
many inlier point correspondences. The bottom left image
represents a case with relatively few correspondences and
low stability. The bottom right image represents a case that
has a critically small number of correspondences. How-
ever, these deficiencies are apparent in the representation,
due to the small probability mass within the confidence
intervals.

6.4 Verification of Confidence Interval

If we construct confidence intervals and collect statistics
on the confidence level needed to capture the true epipole,
this confidence level should ideally be a uniformily dis-
tributed random variable. To explore the sensitivity of our
confidence intervals to discrepencies between the assumed
data model and the actual data model, we use synthetic
data along with our cost function, and measure the devi-
ation from uniform distribution. A synthetic scene with
30% outliers and a known epipole was created.

A 100×100 likelihood image was created using 10
sweeps of the 5pt+e method, and the probability mass re-
quired to capture the true epipole was recorded. This was
repeated 500 times, and the cumulative distribution func-
tion of the mass fractions was plotted. A sublinear cdf
indicates overconfidence, while a superlinear cdf indicates
underconfidence.

We found the best value fork from Equation (8) to be
approximately1/2. As seen in Figure 5, this achieves a
balance in the confidence estimates, whilek = 1 leads
to underconfidence andk = 0 to overconfidence, with a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability mass fraction

P
ro

ba
bi

lit
y 

of
 c

ap
tu

rin
g 

tr
ue

 e
pi

po
le

0.2
0.5
1

Figure 5: Cumulative distribution functions of confidence
levels for varying values ofk. Note thatk = 0.5 most
closely matches a uniform random variable.

highly peaked likelihood.

6.5 Finding Optimal Baseline in an Image
Sequence

As a practical test of inference with our uncertainty repre-
sentation, we aim to find a pair of frames in an image se-
quence that results in the best possible 3-D reconstruction
of a scene. To accomplish this, we search for an optimal
baseline between camera positions, such that we have a
large translation required for accurate reconstruction while
still maintaining a reasonable number of inlier point corre-
spondences. Obtaining a confidence interval between dif-
ferent pairs of images allows us to choose the pair that has
the greatest mass fraction in a fixed-size confidence inter-
val, i.e. leads to the greatest confidence in capturing the
true epipole to within a fixed angle. In our experiment, we
used a video sequence with a camera undergoing sideways
translation relative to the scene. We considered all the im-
age pairs that include the first image (frame 0), leaving the
second image frame for selection. Figure 6 shows the re-
sulting fractions of the probability mass for each frame.
The peak is located at a reasonable baseline spanning four
frames. The sharp decline in mass after frame 7 is caused
by falling below an acceptable number of inlier point cor-
respondences.

7 . CONCLUSION

We have presented a framework for epipolar geometry es-
timation that draws upon both multiple view geometry and
statistics. The central theme is to derive a representation
that faithfully represents the posterior likelihood globally.
This is accomplished with a representation parameterized
by epipole location in the first image. We have explored
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Figure 6: Probability mass lying within confidence inter-
val over a series of video frames.

the efficiency of various fully and partially data-driven
hypothesis generators in deriving the representation. We
have presented experiments with confidence regions de-
rived from our representation and we have experimentally
validated the confidence regions through experiments with
synthetic data. This was done by investigating the distri-
bution of the confidence level needed to capture the true
epipole in the confidence region, which should ideally
be a uniformly distributed random variable. Finally, we
have shown on real data how the uncertainty representa-
tion helps us accomplish inference tasks that are otherwise
difficult, such as selecting which baseline to use when ini-
tializing automatic reconstruction from a video-sequence.
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ABSTRACT: 

 

Fundamental tasks in computer vision include determining the position, orientation and trajectory of a moving camera relative to an 

observed object or scene. Many such visual tracking algorithms have been proposed in the computer vision, artificial intelligence 

and robotics literature over the past 30 years. Predominantly, these remain un-validated since the ground-truth camera positions and 

orientations at each frame in a video sequence are not available for comparison with the outputs of the proposed vision systems. 

A method is presented for generating real visual test data with complete underlying ground-truth. The method enables the production 

of long video sequences, filmed along complicated six degree of freedom trajectories, featuring a variety of objects, in a variety of 

different visibility conditions, for which complete ground-truth data is known including the camera position and orientation at every 

image frame, intrinsic camera calibration data, a lens distortion model and models of the viewed objects. We also present a means of 

estimating the errors in the ground-truth data and plot these errors for various experiments with synthetic data. Real video sequences 

and associated ground-truth data will be made available to the public as part of a web based library of data sets. 

 

 

1. INTRODUCTION 

An important and prolific area of computer vision research is 

the development of visual tracking and pose estimation 

algorithms. Typically these fit a model to features extracted 

from an observed image of an object to recover camera pose, 

track the position and orientation of a moving camera relative to 

an observed object or track the trajectory of a moving object 

relative to a camera. 

 

Clearly, proper validation of such algorithms necessitates test 

images and video sequences with known ground-truth data, 

including camera positions and orientations relative to the 

observed scene at each frame, which can be compared to the 

outputs of proposed algorithms in order to compute errors. 

Surprisingly, very few such data sets or methodologies for 

creating them are discussed in the literature, with reported 

vision systems often validated in ad hoc ways. 

 

Many papers attempt to demonstrate the accuracy of tracking 

algorithms by superimposing, over the observed image, a 

projection of the tracked object based on the positions and 

orientations output by the algorithm. In fact it can be shown 

(Stolkin 2004) that even very close 2D visual matches of this 

kind can result from significantly erroneous 3D tracked 

positions. One reason for this is that certain combinations of 

small rotations and translations, either of cameras or observed 

objects in 3D space, often make little difference to the resulting 

2D images. This is especially true for objects with limited 

features and simple geometry. Such errors can only be properly 

identified and quantified by means of test images with 

accompanying complete 3D ground-truth. 

 

It is relatively simple to construct artificial image sequences, 

with pre-programmed ground-truth, using commonly available 

graphics software (e.g. POV-Ray for windows) and this is also 

common in the literature. However, although testing computer 

vision algorithms on synthetic scenes allows comparison of 

performance, it gives only a limited idea of how the algorithms 

will perform on real scenes. Real cameras and real visibility 

conditions result in many kinds of noise and image degradation, 

far more complicated than Gaussian noise or “salt and pepper” 

speckling and it is not trivial or obvious how to realistically 

synthesise real world noise in an artificial image (Rokita, 1997; 

Kaneda, 1991). This becomes even more difficult when the 

scene is not viewed through clear air but through mist, smoke or 

turbid water. Artificial scenes do not completely reproduce the 

detailed variation of objects, the multitude of complex lighting 

conditions and modes of image degradation encountered in the 

real world. Vision and image processing algorithms often seem 

to perform much better on artificial (or artificially degraded) 

images than on real images. The only true test of computer 

vision algorithms remains their performance on real data. 

 

To this end, several researchers have attempted to combine real 

image data with some knowledge of ground-truth. Otte, 1994, 

describes the use of a robot arm to translate a camera at known 

speeds, generating real image sequences for the assessment of 

optical flow algorithms. The measured ground-truth data is 

limited to known optic flow fields rather than explicit camera 

positions and the camera is only translated. Rotational camera 

motion is not addressed. McCane, 2001, also describes image 

sequences with known ground-truth motion fields. The work is 

limited to simple 2D scenes containing planar polyhedral 

objects against a flat background. The technique involves 

laborious hand-labelling of features in each image and so only 

very short sequences are usable. Wunsch, 1996, uses a robot 

arm to position a camera in known poses relative to an observed 

object. Similarly, Sim, 1999, generates individual images from 

known camera positions using a camera mounted on a gantry 
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robot. In the work of both Wunsch and Sim, ground-truth 

positions are only measured for individual still images as 

opposed to video sequences. Both authors appear to obtain 

camera positions from the robot controller. It is not clear if or 

how the positions of the camera (optical centre) were measured 

relative to the robot end-effector. Agapito, 2001, generates 

ground-truth image sequences using their “Yorick” stereo 

head/eye platform. The work is limited to providing rotational 

motion with only two degrees of freedom. Although data for 

angles of elevation and pan can be extracted from the motor 

encoders of the platform, these are not in relationship to a 

particular observed object. The translational position of the 

camera remains unknown. Maimone, 1996, discusses various 

approaches for quantifying the performance of stereo vision 

algorithms, including the use of both synthetic images and real 

images with various kinds of known ground-truth. Maimone 

does mention the use of an image of a calibration target to 

derive ground-truth for a corresponding image of a visually 

interesting scene, filmed from an identical camera position. 

However, the techniques are limited to the acquisition of 

individual, still images from fixed camera positions. The 

additional problems, of generating ground-truth for extended 

video sequences, filmed from a moving camera, are not 

addressed. 

 

In contrast, our method enables the production of long video 

sequences, filmed along a six degree of freedom trajectory, 

featuring a variety of objects, in a variety of different visibility 

conditions, for which complete ground-truth data is known 

including the camera position and orientation at every image 

frame, intrinsic camera calibration data, a lens distortion model 

and models of the viewed objects. 

 

 

2. METHOD 

2.1 Apparatus and procedure 

An industrial robot arm (six degree of freedom Unimation 

PUMA 560) is used to move a digital cam-corder (JVC GR-

DV2000) along a highly repeatable trajectory. “Test 

sequences”, (featuring various objects of interest in various 

different visibility and lighting conditions), and “calibration 

sequences” (featuring planar calibration targets in good 

visibility) are filmed along identical trajectories (figures 1, 2). 

 

 
Figure 1. “Test sequence”-camera views a model oil-rig object 

in poor visibility. 

 
Figure 2. “Calibration sequence”-camera views calibration 

targets in good visibility. 

 

A complete camera model, lens distortion model, and camera 

position and orientation can be extracted from the calibration 

sequence for every frame, by making use of the relationship 

between known world co-ordinates and measured image co-

ordinates of calibration features. This information is used to 

provide ground-truth for chronologically corresponding frames 

in the visually interesting test sequences. Objects to be observed 

are measured, modeled and located precisely in the co-ordinate 

system of one of the calibration targets. 

 

For those researchers interested in vision in poor visibility 

conditions (e.g. Stolkin 2000) dry ice fog can be used during 

the “test” sequences (figure 1) in addition to various lighting 

conditions (e.g. fixed lighting or spot-lights mounted on and 

moving with the camera). 

 

Note, it is not feasible to extract camera positions from the 

robot control system since the position of the camera relative to 

the terminal link of the robot remains unknown; industrial 

robots, while highly repeatable, are not accurate; 

chronologically matching a series of robot positions to a series 

of images may be problematic. 

 

2.2 Synchronisation 

The “calibration” and “test” sequences are synchronised by 

beginning each camera motion with a view of an extra 

“synchronisation spot” feature (a white circular spot on black 

background). A frame from each sequence is found such that 

the “synchronisation spot” matches well when the two frames 

are superimposed. Thus the nth frame from the matching frame 

in the test sequence is taken to have the same camera position as 

that measured for the nth frame from the matching frame in the 

calibration sequence. The two sequences can only be 

synchronised to the nearest image frame (i.e. a worst case error 

of ±0.02 seconds at 25 frames per second). There are two ways 

of minimizing this error. Firstly, the camera is moved slowly so 

that temporal errors result in very small spatial errors. Secondly, 

many examples of each sequence are filmed, increasing the 

probability of finding a pair of sequences that match well 

(correct to the nearest pixel). If ten examples of each sequence 

are filmed, then the expected error is reduced by a factor of 100. 
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2.3 Feature extraction and labelling 

The calibration targets are black planes containing square grids 

of white circular spots. The planes are arranged so that at least 

one is always in view and so that they are not co-planar. The 

positions of spots in images are determined by detecting the 

spots as “blobs” and then computing the blob centroid. A small 

number (at least 4) of spots in each of a few images scattered 

through the video sequence are then hand-labeled with their 

corresponding target plane co-ordinates. The remaining spots in 

all images are labeled by an automated process. The initial four 

labels are used to estimate the homography mapping between 

the target plane and the image plane. This homography is then 

used to project all possible target spots into the image plane. 

Any detected spots in the image are then assigned the labels of 

the closest matching projected spots. Spots in chronologically 

adjacent images are now labeled by assigning them the labels of 

the nearest spots from the previous (already labeled) image. 

These two processes, of projection and propagation, are iterated 

backwards and forwards over the entire image sequence until no 

new spot labels are found. 

 

2.4 Camera calibration and position measurement 

Our calibration method is adapted from that of Zhang, 1998, 

which describes how to calibrate a camera using a few images 

of a planar calibration target. Related calibration work includes 

Tsai, 1987. The following is a condensed summary of our 

implementation of these ideas. 

 

2.4.1 Homography between an image and a calibration 

target: Since the calibration targets are planar, the mapping 

between the (homogeneous) target co-ordinates of calibration 

features, [ ]T

ttt YX 1=X , and their corresponding 

(homogeneous) image co-ordinates, [ ]T

i vu 1=x , must 

form a homography, expressible as a 33×  matrix: 

[ ] tti XhhhHXx 321==   (1) 

Thus each calibration feature, whose position in an image is 

known and whose corresponding target co-ordinates have been 

identified, provides two constraints on the homography. A large 

number of such feature correspondences provides a large 

number of simultaneous equations: 
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A least squares fit homography is then found using singular 

value decomposition. 

 

2.4.2 Constraints on the camera calibration parameters: 

The mapping between the target and image planes must also be 

defined by the intrinsic and extrinsic camera calibration 

parameters of the camera: 

tti CEXHXx ==
    (3) 

where C is the “intrinsic” or “calibration matrix”: 
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(f is focal length, ku and kv are pixels per unit length in the u and 

v directions, (u0, v0) are the co-ordinates of the principal point, 

pixel array assumed to be square) and E is the “extrinsics 

matrix” defining the position and orientation of the camera 

(relative to the target co-ordinate system), i.e. 

[ ]TrrE 21=
, where r and T denote rotation and 

translation vectors. Note that only two rotation vectors (not 

three) are needed since the calibration target plane is defined to 

lie at Z = 0 in the target co-ordinate system. Hence: 

[ ] [ ]TrrChhhH 21321 ==
   (4) 

 

Since the column vectors of a rotation matrix are always 

mutually orthonormal, we have: 
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Thus one homography provides two constraints on the intrinsic 

parameters. Ideally, many homographies (from multiple images 

of calibration targets) are used and a least squares fit solution 

for the intrinsic parameters is found using singular value 

decomposition. 

 

Once the intrinsic parameters have been found using a few 

different views of a calibration target, the extrinsic parameters 

can be extracted from any other single homography, i.e. the 

camera position and orientation can be extracted for any single 

image frame provided that it features several spots from at least 

one target. 

 

2.4.3 Locating targets relative to each other: We use multiple 

calibration targets to ensure that at least one target is always in 

view during complicated (six degree-of-freedom) camera 

trajectories. Provided that at least one target is visible to the 

camera at each frame, the position of the camera can be 

computed by choosing one target to hold the world co-ordinate 

system and knowing the transformations which relate this target 

to the others. The relationship between any two targets is 

determined from images which feature both targets together, by 

determining the homography which maps between the co-

ordinate systems of each target. For two targets, A and B: 

BBAAi XHXHx ==   (9) 

where 
AX  and 

BX  are the positions of a single point in the 

respective co-ordinate system of each target. Thus: 

 ( ) ( ) BBAiAA XHHxHX
11 −−

==  (10) 

 

2.4.4 Modeling lens distortion: Lens distortion is modelled as 

a radial shift of the undistorted pixel location (u, v) to the 

distorted pixel location ( )vu ˆ,ˆ , such that: 
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2.4.5 Refining parameter measurements with non-linear 

optimization: In practice, all important parameter 

measurements (camera intrinsics, lens distortion, target to target 

transformations, camera positions), which are initially extracted 

using the geometrical and analytical principles outlined above, 

can be further improved using non-linear optimisation. An error 

function is minimised, consisting of the sum  of the squared 

distances (in pixels) between the observed image locations of 

calibration features and the locations predicted given the current 

estimate of the parameters being refined. This results in a 

maximum likelihood estimate for all parameters. 

 

Firstly a small set (about 20) of images are used to compute 

camera intrinsic parameters, lens distortion parameters, camera 

position and orientation for each image (of the small set) and 

the transformations between the co-ordinate systems of each 

target. These parameters are then mutually refined over all 

views of all targets present in all images of the set, by 

minimising the following error function: 

( )
2

1target 1spot 

21 ,,,,,ˆ∑ ∑
= =

−
n

t

m

s

targetttimageimage tststs
kk XTRCxx     (13) 

Where, for m points (spot centres) extracted from n target 

views, 
tsimagex is the observed image in pixelated camera co-

ordinates of the world co-ordinate target point  
tstargetX , and 

tsimagex̂  is the expected image of that point given the current 

estimates of the camera parameters ( )ttkk TRC ,,,, 21
. Note 

that the values of the co-ordinates of 
tstargetX are also dependent 

on the current estimates of target-to-target transformations and 

these transformations are also being iteratively refined. 

 

Secondly, using the refined values for intrinsics, lens distortion 

parameters and target-to-target transformations, the camera 

position and orientation is computed for a single image taken 

from the middle of the “calibration sequence”, again using 

analytical and geometrical principles. Keeping all other 

parameters constant, the six-degrees of freedom of this camera 

location are now non-linearly optimized, minimizing the error 

between the observed calibration feature locations and those 

predicted given the current estimate of the camera location and 

the fixed values (previously refined) of all other parameters. 

 

Lastly, the camera position for the above single image is used as 

an initial estimate for the camera positions in chronologically 

adjacent images (previous and subsequent images) in the video 

sequence. These positions are then themselves optimized, the 

refined camera positions then being propagated as initial 

estimates for successive frames, and so on throughout the entire 

video sequence, resulting in optimized camera positions for 

every image frame along the entire camera trajectory. 

 

 

3. RESULTS 

3.1 Constructed data sets 

We have filmed video sequences of around 1000 frames (at 25 

frames per second) along a complicated six degree-of-freedom 

camera trajectory. Figure 3 shows the camera position at each 

frame, as calculated from the calibration sequence. The 

trajectory is illustrated in relation to the spots of the three 

calibration targets (30mm spacing between spots). 

 

  
Figure 3. The computed trajectory for a six-degree of freedom 

of motion video sequence. 

 

The sequences feature various different known (measured and 

modelled) objects (figure 4) in various different visibility and 

lighting conditions as well as a corresponding calibration 

sequence. Analysis of the calibration sequence has yielded a 

complete camera model, lens distortion model and a camera 

position and orientation for every frame in each of these 

sequences. 

 

 
Figure 4. Two of the objects filmed in the video sequences, 

block and model oil-rig. 

 

3.2 Smoothness of trajectory 

 

One indicator of accuracy is the smoothness of the measured 

trajectory. Figure 3 is a useful visual representation of the 

trajectory and figures 5 and 6 are plots of the translational and 

rotational camera co-ordinates at each frame. Points A, B, C, D 

are corresponding way mark points between figures 3, 5 and 6. 

 

For about the first 40 frames, the camera is stationary at 

point A. It will be noticed that small sections of the trajectory 

appear somewhat broken and erratic, approximately frames 40 – 

160 and 880 – 910. These ranges correspond to the beginning 

and end of the trajectory during which the camera is moved 

from (and back towards) a position fixated on the 

“synchronization spot” (see section 2.2) at point A. During 

these periods, comparatively few calibration features are in the 

field of view. These sections of the video sequence do not 

correspond to visually interesting portions of the image 

sequence and are not used for testing vision algorithms. They 

are included only for synchronization. The remainder of the 

measured trajectory is extremely smooth, implying a high 

degree of precision. The robot is old, and its dynamic 
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performance less than perfect, so the disturbance just after 

motion is initiated (shortly after point A) is probably due to the 

inertia of the system. Second and third peaks of decaying 

magnitude at exactly 20 and 40 frames later suggest that they 

have a mechanical origin.  

 

 
Figures 5 & 6. Top graph shows translational components of 

camera motion along x, y and z axes. Vertical scale in mm. 

Bottom graph shows rotational components of camera motion 

about x, y and z axes. Vertical scale in radians. For both graphs, 

the horizontal scale is image frame number. 

 

3.3 Robot repeatability 

 

In order to assess repeatability, the robot was moved along a 

varied, six-degree of freedom motion that included pauses at 

three different positions during the motion. Several video 

sequences were filmed from the robot-mounted camera while 

moving in this fashion. Images from different sequences, filmed 

from the same pause positions, were compared. Superimposing 

the images reveals an error of better than ± one pixel. This 

implies that errors in image repeatability due to robot error 

approach the scale of the noise associated with the camera itself. 

Our robot is approximately twenty years old. Modern machines 

should produce even smaller errors. 

 

3.4 Accuracy of scene reconstruction 

 

In order to assess accuracy, the image positions of calibration 

features were reconstructed by projecting their known world co-

ordinate positions through the measured camera model placed at 

the measured camera positions. Comparing these predicted 

image feature positions with those observed in the real 

calibration sequence yielded an rms error of 0.6 pixels per 

calibration feature (spot). 

 

When some of the observed objects have been reconstructed in 

the same way, the errors are worse. Figure 7 shows an image 

from a sequence featuring a white block object. The measured 

camera position for the image frame has been used to project a 

predicted image (shown as a wire frame model) and this 

predicted image has been superimposed over the real image. 

This helps illustrate the errors involved (in this case ± 3 pixels 

discrepancy in block edges). This disparity in error magnitude 

(compared to 0.6 pixels above) may be due to over-fitting of the 

camera model to features in the calibration target planes and 

under-fitting to points outside those planes. 

 

 

Figure 7. An image from a sequence featuring a block object. 

The superimposed wire frame image corresponds to the 

predicted image given the measured camera co-ordinates. 

 

3.5 Accuracy of camera pose measurement 

  

In order to estimate the potential overall accuracy of measured 

camera positions, we have used synthetic calibration data. 

Although, in general, synthetic images do not reproduce the 

noise inherent in real images, calibration sequences are filmed 

in highly controlled conditions which are more reasonably 

approximated by synthetic images. Graphics software (POV-

Ray for windows) was used to generate computer models of 

calibration targets. A series of synthetic images were then 

rendered which would correspond to those generated by a 

camera viewing the targets from various positions. These 

images were fed into the calibration scheme. Ground-truth as 

measured by our calibration scheme was then compared with 

the pre-programmed synthetic ground-truth in order to quantify 

accuracy. For simplicity, we have used a synthetic camera array 

of 1000 by 1000 pixels-somewhat better than current typical 

real digital video resolution but far worse than typical real 

single image resolution. Over a set of 6 images filmed from 

several different ranges, but all featuring views of three 

approximately orthogonal calibration targets (see second 

paragraph of section 4), the error in measured principal point 

position was 1. 76 pixels and the error in  measured focal length 

was 0.06%. The average error in measured camera position was 

1.38mm and 0.024 degrees. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Variation in translational camera position error with 

range from calibration targets. 
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Figures 9. Variation in camera orientation error with range from 

calibration targets. 

 

Figures 8 and 9 plot the variation of error with distance of the 

camera from the calibration target origin. 

 

 

4. SUGGESTED IMPROVEMENTS 

The problem, outlined in section 3.4, of over-fitting the camera 

model to points lying in the calibration target planes should be 

avoided in future work by using calibration images filmed at a 

variety of different ranges from the calibration targets. 

 

Although it should be possible to determine the position of a 

calibrated camera given a view of a single calibration target 

(Zhang, 1998), in practice various small coupled translations 

and rotations of the camera can result in very similar views, 

causing measurement uncertainty. These errors can be 

constrained by ensuring that, throughout the motion of the 

camera, all three targets, positioned approximately orthogonally 

to each other, are always in view. In our original experiments 

with real video sequences, only one or two targets were viewed 

in most images and so our camera position accuracies are worse 

than can be achieved. Future researchers should ensure that the 

camera can always view three, approximately orthogonal, 

calibration targets in every image. 

 

It is possible to further automate the labeling of calibration 

spots. By making a specific point, or points, on each target a 

different colour, it may be possible to eliminate the need to 

hand-label a small number of spots in each video sequence. 

 

Viewing the “synchronization spot” after the cam-era has 

already started moving would eliminate the mechanical 

vibration problems of the step response noted at the start of the 

robot’s motion. 

 

The synchronisation problem (see section 2.2), that two 

sequences can only be synchronised to the nearest image frame 

(i.e. worst case error of ±0.02 seconds at 25 frames per second), 

might be eliminated by triggering the camera externally with a 

signal from the robot controller such that video sequences 

started at a specific location in the trajectory. 

 

Note that test sequences can be filmed which feature virtually 

any kind of object. Even deforming or moving objects could 

conceivably be used although measuring ground-truth for the 

shapes and positions of such objects would pose additional 

challenges. Specifically, the use of objects with known textures 

might benefit researchers with an interest in surface 

reconstruction or optic flow. With appropriate equipment, it 

should also be possible to create real underwater sequences 

using our technique. 

 

5. CONCLUSION 

The field of computer vision sees the frequent publication of 

many novel algorithms, with comparatively little emphasis 

placed on their validation and comparison. If vision researchers 

are to conform to the rigorous standards of measurement, taken 

for granted in other scientific disciplines, it is important that our 

community evolve methods by which the performance of our 

techniques can be systematically evaluated using real data. Our 

method provides an important tool which enables the accuracy 

of many proposed vision algorithms, for registration, tracking 

and navigation, to be explicitly quantified. 
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ABSTRACT:

We present a real-time localization system based on monocular vision and natural landmarks. In a learning step, we record a reference
video sequence and we use a structure from motion algorithm to build a model of the environment. Then in the localization step, we use
this model to establish correspondences between the 3D model and 2D points detected in the current image. These correspondences
allow us to compute the current camera localization in real-time. The main topic of this paper is the performance evaluation of the
whole system. Four aspects of performance are considered : versatility, accuracy, robustness and speed.

1 INTRODUCTION

In this paper we evaluate the performance of an algorithm de-
signed to compute the localization of a camera in real-time. Only
one camera and natural landmarks are required. In a first step, we
record a video sequence along a trajectory. Then this sequence
goes through a structure from motion algorithm to compute a
sparse 3D model of the environment. When this model has been
computed, we can use it to compute the localization of the cam-
era in real-time as long as the camera stays in the neighborhood
of the reference trajectory. We have developed this system for
outdoor autonomous navigation of a robotic vehicle, but other
applications such as indoor robotics or augmented reality can use
the same localization system. The main topic of the paper is the
performance evaluation of the localization system. The algorithm
is only briefly presented here, more details can be found in (Royer
et al., 2005).

As soon as a map of the environment is available, it is possi-
ble to compute a localization for the camera with reference to
the map. Several approaches for building the map are possible.
Simultaneous Localization And Mapping (SLAM) is very attrac-
tive because localization is possible as soon as the system starts
working. But map building is the most computer intensive part,
so doing this with monocular vision in real-time is difficult. How-
ever, monocular SLAM has been achieved in real-time (Davison,
2003). But the main drawback is that it’s not possible to handle
a large number of landmarks in the database. Computing a local-
ization from the video flow can also be done by ego-motion esti-
mation or visual odometry (Nistér et al., 2004). But this method
is subject to error accumulation because there is no global op-
timization and the localization accuracy decreases with the dis-
tance covered.

Another possible approach is to build a map first and use this
map to localize the camera. The main advantage is that there is
no real-time constraint on map building. So algorithms providing
more accuracy can be used. This approach has been used several
times for robot localization. Cobzas et al. (2003) use a camera
mounted on a rotating platform and a laser range finder to build
a panoramic image enhanced with 3D data of the environment.
After the 3D model is built, a single 2D image is enough to com-
pute the localization of the camera. Kidono et al. (2002) also use
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a map building step before the localization. Map building con-
sists in recording the video sequence along a reference trajectory,
then localization is possible in the neighborhood of this trajec-
tory as in our method. It works under the assumption that the
ground is planar and the sensors used are a stereo vision rig and
an odometer. In our case, the ground can be irregular and we use
only one calibrated camera. Camera calibration is important in
order to use fish eye lenses with up to 130◦ field of view. Map
building is done with a structure from motion algorithm.

In section 2 we briefly present the algorithms we use to build the
map from the reference video sequence, and how this map is used
for the localization process. In section 3 we show some localiza-
tion results and we discuss the performance of the system. Four
aspects of performance are considered : versatility, accuracy, ro-
bustness and speed. The results come from experiments carried
out indoors and outdoors. The results provided by the vision al-
gorithm are compared to the ground truth whenever possible.

2 ALGORITHM

2.1 Map building

Every step in the reconstruction as well as the localization re-
lies on image matching. Interest points are detected in each im-
age with Harris corner detector (Harris and Stephens, 1988). For
each interest point in image 1, we select some candidate corre-
sponding points in a rectangular search region in image 2. Then
a Zero Normalized Cross Correlation score is computed between
their neighborhoods, and the pairs with the best scores are kept to
provide a list of corresponding point pairs between the two im-
ages. This matching method is sufficient when the camera doesn’t
rotate much around the optical axis which is the case when the
camera is mounted on a wheeled robot. Matching methods with
rotational invariance might be used depending on the application
but they would require more computing power.

The goal of the reconstruction is to obtain the position of a subset
of the cameras in the reference sequence as well as a set of land-
marks and their 3D location in a global coordinate system. The
structure from motion problem has been studied for several years
and multiple algorithms have been proposed depending on the as-
sumptions we can make (Hartley and Zisserman, 2000). For our
experiments, the camera was calibrated using a planar calibration
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pattern (Lavest et al., 1998). Camera calibration is important be-
cause the wide angle lens we use has a strong radial distortion.
With a calibrated camera, the structure from motion algorithm is
more robust and the accuracy of the reconstruction is increased.
In our robotic application, the motion is mostly along the optical
axis of the camera. Point triangulation must be done with small
angles, which increases the difficulty of obtaining an accurate 3D
reconstruction.

In the first step of the reconstruction, we extract a set of key
frames from the reference sequence. Then we compute camera
motion between key frames. Additionally, the interest points are
reconstructed in 3D. These points will be the landmarks used for
the localization process.

2.1.1 Key frame selection If there is not enough camera mo-
tion between two frames, the computation of the epipolar geom-
etry is an ill conditioned problem. So we select images so that
there is as much camera motion as possible between key frames
while still being able to match the images. The first image of the
sequence is always selected as the first key frame I1. The sec-
ond key frame I2 is chosen as far as possible from I1 but with at
least M common interest points between I1 and I2. When key
frames I1 . . . In are chosen, we select In+1 (as far as possible
from In) so that there is at leastM interest points in common be-
tween In+1 and In and at least N common points between In+1

and In−1. In our experiments we detect 1500 interest points per
frame and we choose M = 400 and N = 300.

2.1.2 Camera motion computation For the first three key
frames, the computation of the camera motion is done with the
method given by Nistér (2003) for three views. It involves com-
puting the essential matrix between the first and last images of
the triplet using a sample of 5 point correspondences. There are
at most 10 solutions for E. Each matrix E gives 4 solutions
for camera motion. The solutions for which at least one of the
5 points is not reconstructed in front of both cameras are dis-
carded. Then the pose of the remaining camera is computed with
3 out of the 5 points in the sample. This process is done with
a RANSAC (Fischler and Bolles, 1981) approach : each 5 point
sample produces a number of hypothesis for the 3 cameras. The
best one is chosen by computing the reprojection error over the
3 views for all the matched interest points and keeping the one
with the higher number of inlier matches. We need an algorithm
to compute the pose of the second camera. With a calibrated cam-
era, three 3D points whose projections in the image are known are
enough to compute the pose of the camera. Several methods are
compared by Haralick et al. (1994). We chose Grunert’s method
with a RANSAC approach.

For the next image triplets, we use a different method for com-
puting camera motion. Assume we know the location of cameras
C1 through CN , we can compute camera CN+1 by using the lo-
cation of cameras CN−1 and CN and point correspondences over
the image triplet (N−1, N,N+1). We match a set of pointsX i

whose projections are known in each image of the triplet. From
the projections in images N − 1 and N , we can compute the
3D coordinates of point Xi. Then from the set of Xi and their
projections in image N + 1, we use Grunert’s calibrated pose
estimation algorithm to compute the location of camera CN+1.
In addition the 3D locations of the reconstructed interest points
are stored because they will be the landmarks used for the local-
ization process. The advantage of this iterative pose estimation
process is that it can deal with virtually planar scenes. After the
pose computation, a second matching step is done with the epipo-
lar constraint based on the pose that has just been computed. This
second matching step allows to increase the number of correctly
reconstructed 3D points by about 20 %.

2.1.3 Hierarchical bundle adjustment The computation of
cameraCN depends on the results of the previous cameras and er-
rors can build up over the sequence. In order to correct this prob-
lem, we use a bundle adjustment which provides a better solution.
The bundle adjustment is a Levenberg-Marquardt minimization
of the cost function f(C1

E , · · · , CNE , X1, · · · , XM ) where CiE
are the external parameters of camera i, and Xj are the world
coordinates of point j. For this minimization, the radial distor-
sion of the 2D point coordinates is corrected beforehand. The
cost function is the sum of the reprojection errors of all the inlier
reprojections in all the images :

f(C1
E , · · · , CNE , X1, · · · , XM ) =

NX

i=1

MX

j=1,j∈Ji

d2(xji , PiX
j)

where d2(xji , Pix
j) is the squared euclidian distance between

PiX
j the projection of point Xj by camera i, and xji is the cor-

responding detected point. Pi is the 3× 4 projection matrix built
from the parameters values in CiE and the known internal param-
eters of the camera. And Ji is the set of points whose reprojec-
tion error in image i is less than 2 pixels at the beginning of the
minimization. After a few iteration steps, Ji is computed again
and more minimization iterations are done. This inlier selection
process is repeated as long as the number of inliers increases.

Computing all the camera locations and use the bundle adjust-
ment only once on the whole sequence could cause problems
because increasing errors could produce an initial solution too
far from the optimal one for the bundle adjustment to converge.
Thus it is necessary to use the bundle adjustment throughout the
reconstruction of the sequence. So we use the adjustment hier-
archically (Hartley and Zisserman, 2000). A large sequence is
divided into two parts with an overlap of two frames in order to
be able to merge the sequence. Each subsequence is recursively
divided in the same way until each final subsequence contains
only three images. Each image triplet is processed as described
in section2.1.2. After each triplet has been computed we run a
bundle adjustment over its three frames. Then we merge small
subsequences into larger subsequences and we use a bundle ad-
justment after each merging operation. In order to merge two
subsequences, we compute a best-fit rigid transformation so that
the first two cameras of the second subsequence are transformed
into the last two cameras of the first subsequence. Merging is
done until the whole sequence has been reconstructed. The re-
construction ends with a global bundle adjustment. The number
of points used in the bundle adjustment is on the order of several
thousands.

2.2 Real-time localization

The output of the learning process is a 3D reconstruction of the
scene : we have the pose of the camera for each key frame and
a set of 3D points associated with their 2D positions in the key
frames. At the start of the localization process, we have no as-
sumption on the vehicle localization. So we need to compare the
current image to every key frame to find the best match. This
is done by matching interest points between the two images and
computing a camera pose with RANSAC. The pose obtained with
the higher number of inliers is a good estimation of the camera
pose for the first image. This step requires a few seconds but is
needed only at the start. After this step, we always have an ap-
proximate pose for the camera, so we only need to update the
pose and this can be done much faster.

The current image is noted I . First we assume that the camera
movement between two successive frames is small. So an ap-
proximate camera pose (we note the associated camera matrix
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P0) for image I is the same as the pose computed for the pre-
ceding image. Based on P0 we select the closest key frame Ik
in the sense of shortest euclidian distance between the camera
centers. Ik gives us a set of interest points Ak reconstructed in
3D. We detect interest points in I and we match them with Ak.
To do that, for each point in Ak, we compute a correlation score
with all the interest points detected in I which are in the search
region. For each interest point in Ak we know a 3D position,
so with P0 we can compute an expected position of this point in
I . In the matching process the search region is centered around
the expected position and its size is small (20 × 12 pixels). Af-
ter this matching is done, we have a set of 2D points in image I
matched with 2D points in image Ik which are themselves linked
to a 3D point obtained during the reconstruction process. With
these 3D/2D matches a better pose is computed using Grunert’s
method through RANSAC to reject outliers. This gives us the
camera matrix P1 for I . Then the pose is refined using the iter-
ative method proposed by Araújo et al. (1998) with some modi-
fications in order to deal with outliers. This is a minimization of
the reprojection error for all the points using Newton’s method.
At each iteration we solve the linear system Jδ = e in order to
compute a vector of corrections δ to be subtracted from the pose
parameters. e is the error vector formed with the reprojection
error of each point in x and y. J is the Jacobian matrix of the
error. In our implementation, the points used in the minimization
process are computed at each iteration. We keep only the points
whose reprojection error is less than 2 pixels. As the pose con-
verges towards the optimal pose, some inliers can become outliers
and conversely. Usually, less than five iterations are enough.

3 PERFORMANCE EVALUATION

3.1 Versatility

This localization system was used with several cameras in differ-
ent kind of environments. We used normal and fish eye lenses
with a field of view ranging from 50◦ to 130◦. The localiza-
tion system is performing well both indoors and outdoors with
changing weather conditions (cloudy, sunny, or with snow on the
ground) with a single learning sequence. According to the envi-
ronment we used different methods to evaluate the accuracy and
the robustness of the algorithm. The results of these experiments
are detailed in the following paragraphs.

3.2 Accuracy

3.2.1 Indoor experiments To evaluate the accuracy of the lo-
calization we used a table where we could measure the position
of the camera with a 1 millimeter accuracy in a 1.2 m × 1.0 m
rectangle. We first recorded a reference video sequence on the
left side of the table. The trajectory was a 1.2 m long straight
line oriented along the optical axis of the camera (Z). Figure 1
illustrates the setup with two images taken on each side of the lo-
calization area (1 m apart). Another pair of such images is present
on Figure 9. Most of the objects visible were along the wall of
the room which was about 3.5 m in front of the localization area.
There were 13 key frames and we built a 3D reconstruction from
these images. Then we moved the camera by 10 cm increments in
X or Z in the localization area in order to cover the whole rect-
angle. For each position we ran the localization algorithm and
compared the position given by the vision algorithm to the true
position measured on the table. This gave us 131 measurements:
the position error ei,j was made for X = 0.1i and Z = 0.1j
for each (i, j) ∈ {0..11} × {0..10}. For each lateral deviation
(X = constant) we computed the average value of the error
and the standard deviation. The result is shown on Figure 2. As

Z

X

Localization area

Reference sequence

0
0 1 m

1.2 m

Figure 1: Setup for the indoor experiment

Figure 2: Localization error for a given lateral deviation (average
value and standard deviation)

long as we stay on the reference trajectory, the localization error
is only a few millimeters. The order of magnitude of the error
depends on the distance of the observed 3D points. The outdoor
experiments show a ten fold increase in localization error because
the objects observed can be at 30 m rather than 3 m.

We also made an experiment to evaluate the rotational accuracy.
The camera was mounted on a rotating platform. The angle of the
platform can be read with about ±0.1◦ accuracy. We compared
the orientation α provided by the vision algorithm to the angle
α0 given by the platform. We used the same fish eye lens as
in the previous experiment, providing a 130◦ field of view (in
the diagonal) and we made a measurement for each angle from
α0 = −94◦ to α0 = 94◦ with a 2◦ increment. The reference
trajectory was a straight line (1 m long) oriented along the optical
axis (which was in the 0◦ direction). The result of this experiment
appears on Figure 3. The algorithm was not able to provide the
pose of the camera when the angle reached 95◦ because there
were not enough point correspondences. The angular accuracy
measured with this setup is about±0.1◦, which is about the same
as what can be read on the platform. The algorithm provides a
useful angular information for a deviation up to 94◦ on either
side with this camera. Of course, with such an angular deviation
from the reference frame, the part of the image which can be used
is very small, and the localization becomes impossible if there is
an occultation in this area. Images captured for 0◦, 45◦ and 90◦

are shown on Figure 4.

3.2.2 Outdoor experiment For outdoor situations, the cam-
era is mounted on the roof of a robotic vehicle along with a Dif-
ferential GPS (DGPS) sensor to record the ground truth. Accord-
ing to the manufacturer, the DGPS has an accuracy of 1 cm in
an horizontal plane (it is only 20 cm along a vertical axis with
our hardware). Measuring the accuracy of our algorithms is not
straightforward. Two operations are needed so that both data sets
can be compared. First the GPS sensor is not mounted on the ve-
hicle at the same place as the camera. The GPS is located at the
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Figure 3: Angular error

Figure 4: From left to right images taken at 0◦, 45◦ and 90◦

orientation, with interest points correctly matched

mid-point between the rear wheels of the car, while the camera is
between the front wheels. So the two sensors don’t have the same
trajectory. From the GPS positions, we computed a ”virtual” GPS
which indicates what a GPS would record if it was at the same
place as the camera. In addition, the 3D reconstruction is done
in an arbitrary euclidian coordinate system, whereas the GPS po-
sitions are given in another coordinate system. So the whole 3D
reconstruction has to be transformed using a rotation, translation
and scale change. The approach described by Faugeras and Her-
bert (1986) is used to compute this transformation. After these
transformations have been made, for each camera we are able to
compute the error on the position in meters. Because of the lack
of accuracy of the DGPS along the vertical axis, all the localiza-
tion errors reported for the outdoor experiments are measured in
an horizontal plane only.

Four sequences called outdoor1 through outdoor4 were recorded
by driving manually the vehicle along a 80 m trajectory. The four
sequences were made approximately on the same trajectory ( with
at most a 1 m lateral deviation), the same day. Each sequence
was used in turn as the reference sequence. So we made twelve
experiments : we computed a localization for outdoori using
outdoorj as the reference sequence for each j ∈ {1, 2, 3, 4}
and i 6= j. A few images extracted from outdoor1 are shown
in Figure 5. The positions of the key frames computed from this
sequence are shown in Figure 6 (as seen from the top) along with
the trajectory recorded by the DGPS. Depending on the sequence,
the automatic key frame selection gave between 113 and 121 key
frames. And at the end of the reconstruction there were between
14323 and 15689 3D points.

We define two errors to measure the reconstruction and the lo-
calization accuracy. We want to distinguish the error that is at-

Figure 5: A few images from outdoor1

Figure 6: Position of the key frames (circles) with reference to
the trajectory recorded by the DGPS (continuous line). Whole
trajectory on top and close up view at the bottom (units in meters)

tributed to the reconstruction algorithm and the error coming from
the localization algorithm. The reconstruction error is the av-
erage distance between the camera positions obtained from the
structure from motion algorithm and the true positions given by
the DGPS (after the two trajectories have been expressed in the
same coordinate system). The reconstruction error for each of
the sequences was 25 cm, 40 cm, 34 cm and 24 cm for a 80 m
long trajectory with two large turns. This error is mostly caused
by a slow drift of the reconstruction process. It increases with
the length and complexity of the trajectory. That means the 3D
model we build is not perfectly matched to the real 3D world and
computing a global localization from this model would give at
least about 30 cm of error.

However, in many applications, a global localization is not re-
quired. For example, in our application a robot needs to compute
a self-localization so that it is able to follow the reference trajec-
tory. In this case, we only need to compute the distance between
the current robot position and the reference trajectory as well as
the angular deviation from the reference trajectory. A global lo-
calization is not necessary, only a relative position with respect
to the reference trajectory is needed. We define the localization
error in order to measure the error we make in computing this rel-
ative localization with the vision algorithm. We need a somewhat
more complicated definition for the localization error. First we
compute the lateral deviation between the current robot position
and the closest robot position on the reference trajectory. This is
illustrated on Figure 7. The robot position is always defined by
the position of the middle point of the rear axle of the vehicle.
This position is directly given by the DGPS. When working with
vision it must be computed from the camera position and orien-
tation. First we apply a global scale to the 3D reconstruction so
that the scale is the same between the GPS data and vision data.
We start with the localization of the camera C1 given by the lo-
calization part of the vision algorithm. From C1 we compute the
corresponding GPS position G1 (it is possible because we mea-
sured the positions of the GPS receiver and the camera on the
vehicle). Then we find the closest GPS position in the reference
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Figure 7: Computing the lateral deviation from the reference tra-
jectory

Figure 8: Lateral deviation (top) measured with the DGPS δG
(blue) or with vision δV (red) and localization error ε (bottom)

trajectory : we call itG0. At point G0 of the reference trajectory,
we compute the tangent −→T and normal −→N to the trajectory. The
lateral deviation computed with vision is δV =

−−−→
G0G1 · −→N . The

lateral deviation is computed from the GPS measurements as well
and we get δG (in this case we have directly G0 and G1). δG and
δV are the same physical distance measured with two different
sensors. Then the localization error is defined as ε = δV − δG.
From this we can compute the standard deviation of ε for a whole
trajectory : we call this the average localization error.

We computed the average localization error for each of the twelve
experiments : the smallest was 1.4 cm, the largest was 2.2 cm and
the mean over the twelve videos was 1.9 cm. Figure 8 shows the
lateral deviation and localization error for one experiment with a
1.9 cm average localization error. To make sure that it is a valid
method to measure the localization accuracy, we used a control
law to drive the robotic vehicle. We used in turn the GPS sensor
and the vision algorithm to control the robot. Both methods al-
lowed to drive the robot with the same accuracy (4 cm in straight
lines and less than 35 cm lateral deviation in curves for both sen-
sors). This shows that the accuracy of the GPS and the vision al-
gorithm is equivalent for the autonomous navigation application.
The error can be attributed more to the difficulty of controlling
the robot than to the localization part.

3.3 Robustness

3.3.1 Indoor experiment We made two experiments to eval-
uate the robustness of the localization algorithm. First, we made
no change to the environment between the reference sequence
and the localization step, but up to 6 persons went in front on the
camera to mask a part of the scene. In the second experiment,
we started the localization process with the same environment as
in the reference sequence and we gradually modified the scene.

Figure 9: Images for the off-axis occultation experiment. Top
left : reference image on axis, top right : off-axis image with no
occultation. Second and third rows : occultation by 1 to 6 persons

Number of persons 0 1 2 3 4 5 6
position error 2 1 1 1 1 1 2
on axis (mm)
position error 8 11 4 11 20 44 132
off axis (mm)

Table 1: Localization error for the occultation experiment

We moved or removed some objects, changed the illumination,
and added some occultations. The modifications were made in 8
steps. For both experiments, we recorded the error between the
computed localization and the true localization. We did this for
two different camera positions : one on the reference sequence
(on axis) and one for a position with 1 m lateral deviation from
the reference trajectory (off axis). The reference trajectory was
the same as in the indoor accuracy experiment. Figure 10 shows
the closest key frame found and some of the images for which the
localization was computed. Correctly identified interest points
are also drawn. Figure 9 shows the images used in the off axis
occultation experiment. The localization error is given in Table 1
for the occultation experiment and in Table 2 for the scene mod-
ification experiment. These results show that the algorithm is
robust to large changes in the environment (modifications of the
scene, occultations and changing light conditions). The reason
is that we have a large number of features stored in the database
and only a few of them are needed to compute an accurate local-
ization. Moreover the constraints on feature matching are severe
enough so that additional objects that are added to the scene are
not taken erroneously as inliers. The performance degradation is
visible only with a large lateral deviation and strong changes to
the environment.

3.3.2 Outdoor experiments For outdoors use, a localization
system must be robust to changes in illumination and weather.
Since the system was developed, we have had the opportunity to

Modification 1 2 3 4 5 6 7 8
step
error on 1 1 2 0 2 5 2 5
axis (mm)
error off 29 16 18 24 51 100 21 183
axis (mm)

Table 2: Localization error for the scene modification experiment

35



Figure 10: Images for robustness evaluation on axis : original
image (A), occultation by 6 persons (B), modifications step 2 (C),
step 4 (D), step 6 (E) and step 8 (F)

Figure 11: Localization robustness to weather changes

try it under different conditions. The robot was able to localize
itself and to navigate autonomously in bright sunlight (even with
the sun in the field of view of the camera) and with snow on the
ground even if the reference sequence was recorded on a cloudy
day without snow. Figure 11 shows the reference sequence on
the left with all the interest points available in the database. Two
images extracted from navigation experiments are shown on the
right with the interest points correctly identified. The map build-
ing process is also robust to moving objects in the scene. We have
been able to compute 3D reconstructions for sequences with up
to 500 m long including pedestrians and moving vehicles (Royer
et al., 2005).

3.4 Speed

The timings were made on a 3.4 GHz Pentium 4 processor with
an image size of 640x480 pixels and 1500 interest points detected
in each frame. The code uses the SSE2 instruction set for all the
image processing. The reconstruction time for a sequence such as
outdoor1 is about 1 hour. The whole localization runs in 60 ms.
Detecting interest points takes 35 ms, matching takes 15 ms and
computing the pose takes 10 ms.

4 CONCLUSION

We have presented a localization algorithm and shown its perfor-
mance under different conditions. It has been used both indoors
and outdoors and with various cameras. The accuracy with refer-
ence to the learning trajectory is good enough for most robotic ap-
plications. Guidance applications based on this localization sys-
tem have been successfully conducted outdoors with an accuracy
similar to those obtained with a differential GPS sensor. The al-
gorithm runs in real-time for the localization part. The approach

proposed here works well for our intended application : that is
driving a robot near the reference trajectory. For more complex
navigation tasks either wide baseline matching techniques or a
map with more keyframes from different viewing locations would
be necessary. Future work will be more directed towards an im-
provement of robustness to changes in the environment. Even
if the experiments presented in this paper have shown that the
localization algorithm is robust to some changes, it may not be
enough for an ever changing environment. For example in a
city, cars parked along the side of the road change from day to
day, trees evolve according to the season, some buildings are de-
stroyed while others are built or modified. So our goal is to have
a method to update the map automatically in order to take these
modifications into account.
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ABSTRACT:

In this paper, we propose a robust metric structure from motion (SfM) algorithm for an extended sequence with outliers and missing
data. There are three main contributions in the proposed SfM algorithm. The first is a novel jury-based preemptive LMedS procedure
to achieve efficient outlier detection. The second contribution is a new iterative two-step scheme that consists of robust estimation
techniques for projective structure from motion. The third contribution is a novel algorithm for robust metric upgrade by applying the
M-estimator to the traditional linear constraints for metric upgrade. In addition, comparisons of the proposed algorithm with some
previous methods through experiments on simulated data are shown to demonstrate the efficiency and robustness of the proposed
algorithm
.

1. INTRODUCTION

Structure from motion (SfM) has been one of the central
problems in computer vision. Recent advances on multi-view
geometry have been summarized in some representative books
[1,2]. Since the outlier and missing data problems are inevitable
during the process of automatic extraction and correspondence
of feature points in practice, recent researches on SfM has
focused on improving the robustness of SfM. In this paper, we
proposed a novel algorithm to achieve the metric SfM for a long
sequence with large missing data and outliers. We compare the
proposed algorithm with previous methods through experiments
on simulated data.

Some previous works on dealing with the missing data problem
in SfM are briefly reviewed in the following. For the projective
SfM, Fitzgibbon and Zisserman [4] proposed a solution based
on trifocal tensor. Later, Martinec and Pajdla [3] proposed an
algorithm that combines Sturm and Triggs' projective
factorization method [5] and Jacob's fitting method [6] based on
the subspace constraint. Note that this algorithm is used for
comparison with the proposed method in the experimental
results. On the other hand, several related works were
developed under affine camera assumption, i.e. [6, 7], which
simplifies the SfM to a linear system. This affine approximation
of the SfM problem makes it equivalent to principle component
analysis (PCA) with missing data [8], which is easier than the
projective SfM in principle.

In addition, let us consider the other closely related issue -
outlier problem. Up to now, there still exists no solution to
handle outliers under projective SfM for a long sequence,
though there were some previous methods developed based on
pairwise or triplet views. For example, Torr [9] proposed the
MAPSAC technique to estimate the fundamental matrix. Aanaes
et al. [10] proposed to apply the robust M-estimators under the
assumption of affine camera, thus leading to a linear system
equivalent to the problem of robust PCA with outliers [11]. In
this paper, we proposed a robust projective SfM algorithm to
handle outliers in a long sequence.

Figure 1. Flow diagram of the proposed metric SfM algorithm.

The main challenges in SfM come from the input data
contaminated by missing features, mismatches, and false
positions. It is obvious that the subspace / rank constraint on
SfM can alleviate the influence due to Gaussian image noises.
However, the subspace constraint from the measurement matrix
cannot effectively handle outliers. In addition, the high degree
of freedom in the projective matrices as well as the unknown
projective depth makes the detection of outliers difficult.

The main goal in this work is to develop a robust algorithm for
metric SfM from contaminated data without pre-setting any
case-by-case parameters. The flow diagram of the proposed
algorithm is shown in Figure 1, and the details are given in the
next section. There are three main innovative ideas in the
proposed SfM algorithm. First of all, we propose a preemptive
jury-based consensus process, which dramatically improves the
computational efficiency of LMedS estimation for outlier
elimination. Secondly, an iterative projective reconstruction
algorithm is developed to achieve the desired robustness. In this
algorithm, each iteration involves first using the preemptive
LMedS procedure to determine the projective matrices and then
applying the robust M-estimator to optimize the projective
structure as well as the projective depth with the projection
matrices fixed. Thirdly, a robust metric upgrade process by
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using the iterative reweighted least squared approach is
proposed. For self-calibration, in order to reduce the sensitivity
of decomposing the projection matrix into camera calibration
matrix and metric camera motion, we further take advantage of
hard constraints on the calibration matrix to achieve a more
robust solution.

The rest of this paper is organized as follows. An overview of
the proposed algorithm is given in the next section. In section 3,
we describe the proposed preemptive jury-based LMedS
technique. Then the proposed iterative two-step projective SfM
algorithm is described in section 4. Section 5 presents the robust
metric upgrade process as well as a self-calibration process.
Subsequently, we demonstrate the performance of the proposed
algorithm on both simulated and real data. Finally, we conclude
this paper in the last section.

2. SYSTEM OVERVIEW

The structure from motion problem is to recover camera
motions as well as object structure from a given image sequence.
To focus on the 3D reconstruction problem, we assume the
feature point correspondences across different views in the
video are given. Note that the given correspondences may
include imperfect data, i.e. missing data and outliers. The
camera information includes intrinsic and extrinsic parameters:
the intrinsic parameters are represented by the camera
calibration matrix, K ; the extrinsic parameters determine the
3 3 rotation matrix, R , and a camera translation vector t .

The flow diagram of the proposed algorithm is shown in figure
1. Started from the preemptive scoring process, we score each
observation from the two-view geometry, i.e. fundamental
matrix. The second stage is the robust projective factorization
via an iterative two-step reconstruction algorithm. Then a
robust estimation approach is applied to the upgrade the
projective reconstruction into a metric one. The error
evaluation, obtained from the residues between the data matrix
and the reconstructed projection and structure matrices,
provides information for further refinement. Followed by
combining additional views, we return to the first stage until all
views are integrated.

3. JURY-BASED PREEMPTIVE LMEDS

RANSAC [12] and LMedS [2] are two traditional robust
techniques to eliminate outliers. However, these techniques are
computationally expensive. Therefore, we proposed a more
efficient procedure to speed up the computational process.
Motivated by Nister’s preemptive RANSAC [14], we
developed the so-called preemptive jury-based LMedS.

Referred to Nister’s literature [14], the preemptive scheme can
be categorized into the depth first and breath first manners. The
depth first manner, noted as an order rule in the preemption
scheme, dominates the hypothesis generation. This rule selects
the inliers with higher likelihood for hypothesis generation
according to previous experiences. On the other hand, the
breath first fashion, noted as the preference rule, efficiently
evaluates the hypotheses on equal footing. Not all observations
are used to score all the selected hypotheses, but this rule
eliminates bad hypotheses in the scoring procedure.

In principal, Nister’s breath first preemptive scheme has a
potential problem that the final result strongly depends on the

scoring series. In his algorithm, the measurement is not on
equal footing because earlier selected observations possess
greater power in the hypotheses elimination than the later
selected observations. We can declare that the breath first
preemptive scheme works well only when the outlier rate is
relatively small. Some experimental results will be shown later
to support this argument.

To overcome the above problem with the breath first scheme
and to further improve the efficiency in the LMedS technique,
we develop a jury-based preemptive scheme in conjunction
with the LMedS process. Instead of a single observation as
used in the breath first scheme of the preemptive RANSAC
method, we select a set of observations into a jury. Under the
assumption of random sampling, the outlier rate in jury is
approximately the same as that in whole. Thus, we can
approximate the median value efficiently. The proposed
jury-based preemptive LMedS process is given as follows,

Algorithm 1. Jury-based preemptive LMedS algorithm

Note that, in Algorithm 1, ( ) 2
i
Bf i M
   

 
 
  

, where M is the

total number of hypotheses and B is the block size, denotes a
decreasing preemption function that indicates how many
hypotheses are to be kept at each stage. The scoring function,
 ,j h , gives a scalar value representing the log likelihood of

the observation, j , given that the hypothesis, h , is the
correct motion model. Note that observations are random
selection of the input matches which are not used for building
hypothesis. For more details of the theoretical derivation of
the preemptive scheme, the readers can refer to Nister’s original
paper [14]. The notations in this section follow those used in
[14]. We modify the scoring process in the proposed preemptive
LMedS scheme and improve the computational efficiency.
Some experiments on simulated data are demonstrated to show
its performance in section 6.

We applied this procedure to the two stages of our algorithm.
One is the computation of fundamental matrix in the preemptive
scoring process; the other is the projective factorization in the
stage of robust projection matrix estimation.

4. ROBUST PROJECTIVE STRUCTURE FROM
MOTION

For projective SfM, the factorization approach can be
formulated as follows,

1. Generate the hypotheses indexed with h = 1,…,
f(1).

2. Randomly permute the observations and classify
them into m juries.

3. Compute the scores L1(h) = median{ρ(j, h) | j
belongs to jury 1} for h = 1, . . . , f(1). Set i = 2.

4. Reorder the hypotheses so that the range h = 1, . . . ,
f(i) contains the best f(i) remaining hypotheses
according to Li-1(h)

5. If i > m or f (i) = 1, quit with the best remaining
hypothesis as the preferred one. Otherwise,
compute the scores Li(h) = median{ρ(j, h) | j
belongs to jury 1 .. i,} for h = 1, . . . , f(i), set i = i +
1 and go to Step 4.
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  1    W D U PX PH H X PX (1)

where W is the measurement matrix formed by input data
matrix, U , and their corresponding projective depths, D . The
operator  denotes the scale (projective depth) multiplying its
corresponding vectors (homogeneous image coordinates). The
matrix form is as follows,

1 1 1 1 1 1 1
1 1 2 2
2 2 2 2 2 2 2

1 1 2 2
1 2

1 1 2 2

n n

n n
n

m m m m m m m
n n

  
  

  

   
   
         
   

     

u u u P
u u u P

X X X

u u u P


 

    


(2)

where i
ju denotes the image position of the j-th point at the

i-th view represented in a homogeneous 3-vector  , ,1
Ti i

j ju v ,

jX is the corresponding three-dimensional position of the j-th

point represented in a homogeneous coordinate, iP is a 3 4
camera projection matrix of the i-th view, and i

j is the

corresponding projective depth in the projective geometry. The
projective 3D-to-2D transformation is written as i i i

j j j u P X .

Applying the singular value decomposition (SVD) to the
measurement matrix enforces the subspace constraint, i.e.
rank-4 constraint. Referred to [1], the algorithm iteratively tunes
the projective depths with the subspace constraint to achieve the
projective reconstruction. The convergence property is further
discussed in [1].

4.1 Robust Determination of the Projection Matrices

Projective factorization is very sensitive to outliers. To
overcome such challenges, robust techniques, such as
RANSAC, can strategically be applied to the original
algorithm to improve the results under outlier disturbance. The
basic requirement for such robust techniques to eliminate
outliers is that there exist more than necessary constraints, so
that the reliability of each constraint can be consensually
evaluated. For the projective factorization, the minimal
reconstruction set requires 3 views with 6 corresponding points.
The robust version for projective factorization is to apply the
preemptive jury-based LMedS to the projective factorization
[1]. Note that the feature selection is based on the Monte-Carlo
process according to the preemptive scores.

4.2 M-estimator to Compute the Projective Structure

Given a set of 2D image points with the associated projection
matrices, the corresponding three-dimensional feature points
can be computed with a closed-from solution once the
projective depths are known. However, the projective depths are
generally unknown. Therefore, we carry out an iteratively
approach to estimate the optimal three-dimensional structure by
adjusting the projective depths appropriately. For the k-th
iteration, we denote the current depth matrix as

kD , and the
closed-from solution can be formulated as follows,

  UDPX   kk
(3)

where †P denotes the pseudo-inverse of the matrix P . Each
projective depth entry in  1kD at the next iteration is then
updated as   1k kj i i

i j j  P X u . However, to further

improve the robustness, we apply a robust measure at the outer
loop. Thus, the RLS (re-weighted least square) solution replaces
the LS (least square) solution in equation (3). We make use of
the robust  function, such as the Lorentzion (or Cauchy)
function [14] commonly used in robust statistics, to develop the
M-estimation for the projective factorization. The robust 
function is defined [14] as follows

2

2( ) log(1 )
ˆ2

r
r


 

(4)

The minimization of the robust energy function can be achieved
by the iteratively RLS minimization. In this case, the weights
are associated with the given projective matrices, and the
residue is the norm of the error between the 2D image points
and the obtained projective reconstruction which is determined
at the inner-loop by adjusting the depths as described above.
Thus the energy function to be minimized can be written as the
following dynamic energy function, which is changing from
iteration to iteration.

  k k W PX W D U (5)

where the weights associated with the residue is given as
follows

2

2 2

ˆ2
ˆ2iw

r






(6)

Note that   ˆ 1.4826 1 5 medn p E   is the median

absolute deviation (MAD) estimation [14].

Algorithm 2. Robust M-estimation of the projective structure
with projective matrices given.

With this modification, the pseudo-inverse of P , turns from the

1. Initialize all the weights to 1, i.e. W = I.
2a. Initialize all 0 1j

i  for 0D and set 0k  .
2b. Normalize the depths by multiplying each column

of D with a constant factor.
2c. Solve   k k WX P D M

2d. Update  1kj
i

 . Set 1k k 
2e. Exit the inner-loop if converged, else go to step

2b.
3. Update the weights by the M-estimator from eq(5)
4. Exit if converged, else go to the inner loop in step 2.
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LS solution,  1† T T
P P P P , to the RLS solution,

 1† 2 2T T
WP P W P P W . Given the projective matrix, the

algorithm2 shows the robust estimation of the homogeneous
three-dimensional structure. Note that step 2 in Algorithm 2 is
the inner-loop in order to iteratively determine the projective
depths; step 1, 3, and 4 is for evaluating the reliability of the
input projective matrices for robust estimation of the projective
structure.

5. ROBUST METRIC UPGRADE

To upgrade the projective reconstruction to a metric one, we
have to determine the ambiguity matrix, Η in equation (1).
This has to employ additional constraints, which may come
from the prior knowledge of the camera calibration matrix.
According to the absolute quadric constraint [17], the projection
of the absolute quadric in the image yields the dual image
absolute conic. This formulation of the absolute quadric
constraint is shown as follows,

T
ii

T
iii PPKK **  (7)

The following assumptions provide linear constraints for the
entries in a symmetric 4 4 rank-3 matrix * , i.e

yx ff     1 1 2 2T T
i i i i

   P P P P

0s   1 2 0T
i i

 P P

 ,o ou v
 1 3 0T
i i

 P P
 2 3 0T
i i

 P P
(8)

Note that  ,x yf f are the focal lengths along x- and y-axis,

respectively, s denotes the skew factor,  ,o ou v is the

principle point or image center, and j
iP denotes the j-th row

of iP . The linear (closed-form) solution is referred to [15].

In order to obtain a more robust solution, we weight each
constraint with the robust M-estimator, which is similar to the
computation of the robust projective structure introduced in
section 4.2. For each view, we have the following linear
equations,

    
  
  
  

1 1 2 2

1 2

1 3

2 3

0

0

0

0

T T
i i i i i

T
i i i

T
i i i

T
i i i

w

w

w

w









    

  


 

  

P P P P

P P

P P

P P

 






(9)

In order to clarify the notation, we denote *Ω as the initial
absolute quadric computed from the above equations, which
may not be exactly rank-3. At the beginning, we set equal
weights for each view, i.e. 1iw  , to determine *Ω . By

enforcing the rank-3 constraint on *Ω , we determine the
absolute quadric *Ω via SVD. However, this step leads to
additional errors in the linear system, thus we define the
following residue for each projection matrix,

    
        

21 1 2 22

2 21 2 1 3 2 3

T T
i i i i i

T T T
i i i i i i

r  

  

 
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P ΩP P ΩP

P ΩP P ΩP P ΩP

(10)

According to the residues, we re-adjust the weights as equation
(6), i.e. Lorentzion (or Cauchy) function [14] mentioned in 4.2.
The RWLS process, iteratively reducing the residues under the

rank-3 constraint on *Ω through tuning the weights, turns out
to be an M-estimator for robust metric upgrade.

6. EXPERIMENTAL RESULTS

In this section, we show some experimental results of the
proposed algorithm in comparison with some previous
methods on simulated data. We first show the experimental
comparison of the proposed jury-based preemptive LMedS
algorithm, followed by the experimental comparison for the
proposed SfM algorithm.

We used 200 point correspondences with additive Gaussian
noises (standard deviation = 1.5) in image as well as 5~40%
gross outliers. We compared the proposed preemptive LMedS,
which uses the block size 1B  and 10 observations in a
jury, with Nister’s preemptive RANSAC, with the block size

10B  , LMedS, and MAPSAC algorithms with this
experiment on fundamental matrix estimation with
contaminated data. For a fair comparison, we used the same
Torr’s seven-point method for computing the fundamental
matrix for all the above four algorithms. Furthermore, the four
algorithms share the same set of hypotheses which were
randomly generated from 1000 samples, so that we examined
which of these four methods makes the best use of the
hypothesis. The experimental results shown in Figure 2
indicate that the proposed scheme approximates the
performance of the full-scoring procedures, i.e. LMedS and
MAPSAC, and it reduces 90% of the full-scoring burdens.
Thus, it shows the advantage in the computational efficiency of
the proposed algorithm.
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In the following, we show the experimental comparison of the
SfM methods on simulated data. The simulations are designed
to examine the performance under different data missing and
outlier rates. We compare the proposed SfM algorithm with
Martinec and Pajdla’s algorithm [1]. Their code is available
from the public domain. Note that their metric upgrade process
is removed since it crashed for some simulated cases. So we
upgraded their projective reconstruction according to the ground
truth.

The simulation environment is as follows. First of all, we
randomly generated 300 points within a 20 unit length squared
box in 3D space, and its center is randomly located around the
world center in the radius of 10 unit length. Thirty cameras are
located in a circle of radius 100 unit length, and their viewing
directions are the world center plus additional random rotation
within 5 degrees in Euler angle. Calibration matrices are
constant with focal lengths within 1500, and skew parameters
1.5, and image center (1000, 650). Each observation point is
perturbed with Gaussian noises σ= 1.5, followed by the
rounding operation. The outliers are randomly selected
according to the simulated outlier rate. The farthest points to the
current camera are selected as the missing points at that view
according to a given missing rate. One hundred trials are made
to obtain the final results.

We examine the reprojection error, 3D reconstruction error, and
reconstruction rate at different data missing rates and outlier
rates to compare the performance. The reprojection error
evaluates the error between reconstructed and measured points
in image space, and the 3D error is measured in RMS of the
Euclidean distance of the simulated unit length. The
reconstruction rate is the ratio of the reconstructed points to the
total number of points.

In the first simulation, we examine the algorithms with different
missing rates as shown in Figure 3. In the second simulation, we
examine the robustness under different outlier rates with a
constant missing rate as shown in Figure 4. Then, we test the
performance with more views integrated as shown in Figure 5.

(a)

(b)

Figure 3. (a) The reprojection errors and (b) the 3D errors at
different missing rates for the proposed algorithm and Martinec
and Pajdla’s algorithm.

7. CONCLUSION

In this paper, we proposed a novel robust metric structure from
motion algorithm for a long sequence with outliers and large
missing data. The jury-based preemptive LMedS procedure was
developed to achieve efficient outlier detection in the robust
projective SfM. In addition, we also applied robust estimation
techniques in the projective SfM as well as the metric upgrade
processes. We demonstrate the robustness, accuracy and
efficiency of the proposed SfM algorithm through experimental
comparisons with previous methods.
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Figure 4. (a) The reprojection errors; (b) the 3D errors; (c) the reconstruction rates at different outlier rates for the proposed algorithm
and Martinec and Pajdla’s algorithm.

(a) (b) (c)
Figure 5. (a) The re-projection errors; (b) the 3D errors; (c) the reconstruction rates at different views for the proposed algorithm and
Martinec and Pajdla’s algorithm.
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ABSTRACT: 
 
This article describes a new method of Shape from Shading, Shape from Isophotes. Shape from Isophotes uses the image isophotes 
for recovering the object surface normals. It is a propagation method. It initially directly recovers a small number of surface normals 
and then uses them to estimate normals at neighboring points in either adjacent isophotes or within the same isophote. The 
propagation can start either from occluding contours or singular points. Shape from Isophotes explicitly addresses brightness 
quantization errors, which can affect the performance of traditional Shape from Shading techniques. Since our method is based on 
the relationship between isophote curves and changes in surface normals [9,10], it is mainly applicable to smooth diffuse surfaces. 
The accuracy of the proposed technique was measured using synthetic images of simple objects with Lambertian reflectance, as well 
as real objects of known geometry. The normal map was recovered with accuracy of well bellow 7º average error. The method 
requires some interpolation, as it is possible that we may not be able to recover the surface normals at each pixel 
 
 

1. INTRODUCTION 

There is a big body of work done in the field of Shape from 
Shading (SFS), [1,2,3,4,5,7,8,11,12,14,15] just to mention a 
few. Despite their inherent limitations (they often need input 
images of scenes with strong parallel illumination rays and/or 
impose object surface restrictions), they are still often used 
especially for the shape recovery of smooth, featureless 
surfaces. 
 
Among the first SFS approaches was Horn’s use of a set of five 
differential equations whose solution produces a curve [5], a 
characteristic strip. The direction of characteristic strips is the 
direction of the intensity gradients, and in the case of a 
rotationally symmetric reflectance map they are the curves of 
steepest descent. Though Horn’s characteristic strip technique 
demonstrated that the recovery of a normal map is feasible from 
a single image, it may, like most gradient descent methods, 
produce erroneous results (for more details see section 2.1). 
Newer algorithms that are still based on gradient descent like 
Dupuis and Oliensis [3], and Bichsel and Pentland [1] are still 
suffering from the same limitation. 
 
Other researchers used different techniques to recover the 
surface normals from intensity images. For example, Kimmel 
and Bruckstein [8] use level sets for recovering shape from 
shading. Another class of SFS algorithms treats shape recovery 
from irradiance as a minimization problem. For example, 
Horn’s [7] minimization approach replaces the smoothness 
constraint with an integrability constraint. Frankot and 
Chellappa’s [4] minimization approach places emphasis in 
enforcing integrability. Zheng and Chellappa [15] replace the 
smoothness constraint with an intensity gradient constraint. 
Pentland uses a local approach in [11] based on the local 
sphericity assumption. However, they too have their limitations. 
Most minimization approaches have a tendency to be slow. 
Furthermore, standard variational algorithms may not 
reconstruct a surface from noisy images even after thousands of 
iterations [2]. 

 
Other shape recovery methods obtained very good results: 
photometric stereo [13], stereopsis, moving light source, 
structured light. These methods require multiple images often 
obtained under controlled conditions. Photometric stereo uses 
multiple images of the same object taken under different 
lighting conditions. The multiple illumination setup creates a 
system of irradiance equations which are used to recover the 
normal map (and albedo). Binocular (polyocular) stereo does 
not typically impose any restrictions on illumination, but 
requires capturing a scene from multiple viewpoints using at 
least two cameras. It tries to identify features in two or more 
images that are projections of the same entity in the 3D world. 
Structured light uses pictures of objects illuminated by a pattern 
of light. The camera senses the result as a grid distorted by the 
surface structure and its pose. Thus, although these shape 
recovery methods do not have the same constraints as SFS 
methods, they too have their inherent limitations. 
 
Our methodology, Shape from Isophotes, is focusing on 
overcoming some of the shortcomings of SFS methods. More 
specifically, Shape from Isophotes avoids differentiation which 
results in improved (pixel level) accuracy. Unlike most of the 
previous methods, it is not gradient descent based and can be 
applied on piecewise smooth surfaces. It also explicitly 
addresses complications that may arise from brightness 
quantization errors. Our technique is not without limitations. 
Like other SFS methods, we too assume single distant point 
light source and orthographic projection. 
 
The Shape from Isophotes (SFI) method is based on the close 
relationship between isophotes (regions of constant brightness) 
and surface normals [9, 10]. It initially directly recovers a small 
number of surface normals either on occluding contours or on 
singular points, in general on any pixel where a surface normal 
estimate can be directly obtained from the image. We then use 
the structure of isophote regions in an image to recover the 
remaining surface normals. Specifically, our method is 
composed of 2 parts: a) the method that deals with surface 
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normals at the border of isophote regions, which we will refer 
from now on as the border method and b) the method that 
propagates the surface normal information within an isophote 
region which we call the interior method. The border method 
calculates new values for the surface normal when there is a 
change in the image brightness between adjacent pixels, the 
interior method chooses the propagation direction for a known 
surface normal as long as there is no change in the image 
brightness. 
 
 

2. OVERVIEW OF SHAPE FROM ISOPHOTES 
METHOD 

2.1 Intensity Gradients and Curves of Steepest Descent 

Many SFS algorithms [1, 3, 5, 8] use the direction of steepest 
descent, in recovering the surface normals. This principle states 
that if a step is taken in the image plane in a direction parallel to 
the gradient of the reflectance map, the corresponding step in 
gradient space is parallel to the gradient in the image. For 
rotationally symmetric reflectance maps, the direction of 
intensity gradient is also the direction of steepest descent [6]. 
However, these algorithms may fail to orient the surface normal 
correctly, particularly in regions where different surfaces may 
result in similar intensity gradients (for a graphic representation 
of this problem see figure 2). The effect is more pronounced 
when surface orientation is recovered based on local 
information. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider, for example a hyperboloid Lambertian surface, 
illuminated by a single distant light source aligned with the 
optic axis (see fig. 1). We use the notation (p,q) for the gradient 
of the surface. p is the slope of the surface with respect to the 
X-axis, i.e. xyxfp ∂∂= /),(  while q is the slope of the surface 
with respect to the Y-axis, i.e. yyxfq ∂∂= /),( . Assume that 
the reflectance map R(p,q) has a unique isolated maximum at 
(p0,q0), which means R(p,q)<R(p0,q0) for all (p,q) ≠ (p0,q0) 
where R(p,q) is the reflectance map of the surface. Assume that 
at some point (x0,y0) in the image, the image irradiance 
E(x0,y0)=R(p0,q0). This point is called a singular point and the 
gradient (p,q) at this point is uniquely determined to be (p0,q0) 
[6]. In our example, the singular point is at the centre of the 
image. The isophotes close to the singular point are almost 
circular. Still the surface is far from being rotationally 
symmetric. This suggests that there are cases when the 
characteristic curves methods may produce erroneous results 
For instance, as shown in fig. 3, a characteristic strips method 
can lead to incorrect normals during propagation, even though it 
starts with accurate normal recovery at the singular point. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In fact, the singular point is often a singular region in images, 
due to brightness quantization, and most of its normals are 
neither identical, nor parallel to the incident light direction. 
Figure 2 graphically demonstrates a few possible normal 
orientations at the border of the singular region. The normals’ 
directions inside the singular region are close enough to the 
light direction so that the whole region has maximum 
brightness. The propagation methods often approximate the 
region around the singular point with a spherical cap. 
 
Characteristic strips methods are particularly sensitive in 
surface recovery in hyperbolic points, partly because they 
propagate normal information along the direction of intensity 
gradients. In order to overcome this, we decoupled the surface 
normal recovery computation from the propagation process. 
Our method, Shape from Isophotes, does not use the direction 
of steepest descent. More specifically, the surface normal 
recovery computation is done during the border method phase 
(see section 2.2) and the propagation during the interior method 
phase (see section 2.3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 shows the expected outcome of Shape from Isophotes 
for the same example of singular region. The solid arrows 
represent normals, the dotted lines the propagation path; the 
grey areas are isophote regions and the lines between them the 
borders between the isophote regions. The singular region has 
surface normals on the border similar to those in fig. 2(a).  
 
 
 
 
 
 
 
 
 
 

Figure 1. Synthetic image of a hyperboloid, Lambertian 
surface, illuminated by a distant point light source aligned 

with the optic axis. 

Figure 4. Shape from isophotes method. 

Figure 3. Characteristic strips (in dotted line). 

Figure 2. Three possible surface normal orientations on a 
singular region border 

(a) 

(b) 

(c) 
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2.2 Surface Normals at the Border of Isophote Regions 

Consider two infinitesimally small planar surface patches p1 
and p2 such that they correspond to image patches close to the 
isophote border which also lie on different sides of the border. 
Assume that we know the normal n1 to the surface at a point P1 
inside the surface patch p1. P1 is adjacent to the border with the 
other isophote region. Then there is enough information to find 
the normal n2 at the point P2 inside the surface patch p2. 
 
Let n be the normal to the plane p which is perpendicular to the 
image plane and tangent to the isophote border (see figs. 5, 6, 
and 7). Then the normals n1, n2 and n are coplanar, being 
normals to three planes whose intersection is a line. n1 and n 
constraint n2. Let S2 be the set of possible surface normal for 
patch p2 (see fig. 7). Since n2 must be coplanar to n1 and n, 
there is a very small solution space for S2. For example, for a 
Lambertian surface, the normals n1 and n must lie on a cone 
centred at the light source direction (pS,qS). Then we can find 
the possible n2 values by applying the co-planarity constraint to 
S2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, the only feasible n2 values must lie on the 
intersection of the cone with the plane that contains n1 and n. 
Then 0, 1 or 2 solutions are obtained. Normally, 0 solutions 
should never be obtained. If 0 solutions are obtained, the 

starting normal had the wrong value and one should restart the 
computation with a different starting normal value. 1 solution is 
obtained inside a singular region. 2 solutions are obtained 
everywhere else. In practice, quantization errors make obtaining 
0 solutions possible even if there should be 2 very close 
solutions. We chose to stop the propagation if the solutions 
were close to each other. In conclusion, by using our border 
method, we can estimate the surface normals at a pixel 
bordering an isophote region, once the normal at the other side 
of the border is known. 
 
2.3 Surface Normals within an Isophote Region 

Once a normal of an isophote region is known we can propagate 
that information inside an isophote region. We assume that 
locally the isophote is a developable surface with generator line 
L’0. We propagate the surface normal information along the 
generator line or its approximation since that is the direction of 
minimal change. For approximately Lambertian surfaces it 
suffices to propagate along the plane of incidence. The plane of 
incidence at a point P is the plane defined by the incidence 
beam and the surface normal at point P (see fig. 8). 
 
If the intersection between the incidence plane and the surface 
is a line, then it is the generator line L’0. However, brightness 
quantization can create isophote regions resulting in the loss of 
finer shading information which cannot be recovered. Though 
we can not recover the original object shape, we can still extract 
the shape of a polygonal object which approximates the original 
object shape. For the approximate polygonal object, the image 
isophotes correspond to the planes of the object. We need to 
find out the generator lines L’0 which generate these planes. 
The surface normal does not change along that line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For diffuse surfaces in general, we can compute L’0 as follows. 
Assume that we choose three points n1, n2, n3 in (p,q) space so 
that they lie on the locus of the same constant intensity (see fig. 
9a). Each of these three points ni is represented by a plane pi in 
(x,y,z) space (see fig. 9b). The intersection between any pair of 
these planes in (x,y,z) space is a line L’i which is represented in 
(p,q) space by the line Li that connects the corresponding points 
of those planes. The intersection between the planes p1 and p2 is 
represented by the line L1 which connects n1 and n2. Now if n1, 
n2, n3 are very close to each other, the lines that connect them 
are almost parallel to the tangent L0 to the curve in the middle 
point n2. This means that the intersections of the planes p1, p2 
and p3 become almost parallel to the line L’0 in (x,y,z) that 
corresponds to that tangent. One can think of the planes p1, p2 
and p3 as part of a developable surface whose generator is line 
L’0. 
 
Consider now all the points of the locus on which n1, n2 and n3 
lie. Each of the points on that locus corresponds to a plane in 

Figure 5. The image formation and the patch-plane 
correspondence. An object, its image, the isophote regions, the 

p1 and p2 patches, the p plane and the n1, n2 and n normals. 

The source light 
is situated at an 
infinite distance 

z 
x 

y 

Object image 

The object 
reflected 
light 

n2 
n n1 

Figure 6. n1, n2 and n are coplanar if the planes 
intersect on a line. The p1 and p2 patches, the p plane 

and the n1, n2 and n normals isolated 

n1 

n2 

n

p2 

p1 

p 

Figure. 7. The intersection between S2 (the set of 
possible normals for the brightness of the point P2 

and light direction) and the plane (n1,n) gives 
three solutions in this particular case. 

n1 

n2 
n

S2 

p2 

p1 

ns 

P’1 

P’2 

n1 

n2 

Figure 8. The construction for Surface Normals within 
an Isophote Region for a Lambertian surface 
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(x,y,z) space. For each triplet of closely spaced consecutive 
points on the locus, one can apply the same logic. Thus, the 
normals on the entire locus corresponds to a developable 
surface whose generator is line L’0. The entire developable 
surface is contained in the same isophote in our image. 
 
The normals in other points of the same isophote region can be 
obtained either by interpolation, or by applying either the 
interior method or the border method to another known normal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.4 Shape from Isophotes 

In order to extract the surface normals at the whole surface, we 
combine both the border method and the interior method. On 
the isophote regions’ borders the border method is applied, 
while in the interior of the isophotes regions’ the interior 
method is applied. Both methods introduce some errors due to 
quantization, but the errors are within acceptable limits (see 
sections 4.1 and 4.2). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10 shows the method applied to a simple convex object. 
Each different shade of grey represent a distinct isophote 
region. The propagation in this example started from the 
singular point. The arrows represent propagation directions. 
 
Figure 11 shows the first 4 cycles of the method. The object 
was a sphere. The starting points are the border of the singular 
region. The upper row shows the propagation curves. The lower 
row shows the detected isophote region borders. 
 
To summarize, the Shape from Shading algorithm is as follows: 
1. Directly compute starting surface normals where available 
(e.g. at singular points or occluding contours) 
2. Propagate away from the starting normals as follows: 

If the current normal is adjacent to an isophote region apply the 
“border method, else apply the “interior method” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. EXPERIMENTS 

In order to test the limitations of our method we first performed 
a series of test on synthetic images. That allows us to provide 
quantitative error measurements and examine the sensitivity of 
our method to noise. The objects’ geometry and surface 
normals are known. 
 
3.1 Synthetic Data 

The sample images were created using a Lambertian surface, 
the error was calculated by averaging the angle between the 
calculated normal and the known normal at every point of the 
image that represents the object. The light source is a point light 
source at infinite distance. We tested the algorithm on two 
shapes: a hyperboloid and a cone. Two errors were calculated 
for each object: one before there was any interpolation done and 
one after the interpolation. Our first test (see figures 12 and 13) 
assumed ideal data, with no noise, so our only source of 
inaccuracies is quantization error. In order to test the sensitivity 
of our algorithm to noise, we added a random noise of +/-2 
intensity values at each pixel (see figures 14 and 15). 
 
Shape Average error before 

interpolation 
Average error after 
interpolation 

Hyperboloid – 
noise free 

1.502% (2.704º) 1.700% (3.060º) 

Cone – noise free 1.665% (2.998º) 1.769% (3.184º) 
Hyperboloid – 
noisy 

2.719% (4.892º) 2.800% (5.039º) 

Cone – noisy 2.134% (3.842º) 2.431% (4.376º) 
 
 
 
We started the propagation from the points on the occluding 
boundary. The albedo of the objects was known in advance. In 
each of the figures 12, 13, 14 and 15 the image that was 
analyzed is shown on the left, the recovered normal map is 
shown in the middle and an error image is shown on the right. 
The error image shows the error distribution on the surface.  
Darker areas have smaller errors, lighter ones bigger ones. The 
contrast was enhanced from the original image so that white 
corresponds to 100% error and black to 0% error for a better 
visibility. The biggest errors occur in the interpolated areas. 
 
 
 
 
 

Figure 10. Shape from Isophotes can start at a singular point, 
as in this example, of from occluding contours.

Table 1. Average error for the Hyperboloid and Cone 
synthetic images 

Figure 11. Hyperboloid, Lambertian surface, light 
perpendicular to the image. 

n2 n3 

n1 

L0 

L1 
L2 

(p,q) space 

n3 
n1 

 

L’1 
L’2 

p1 
p2 

p3 

(x,y,z) space 

Figure 9. Three points on a curve both in a) (p,q) space 
and b) (x,y,z) space 

(a) 

(b) 
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3.2 Real Data 

We also applied our algorithms on real data. The images were 
taken in a controlled environment. The objects were less than 
10cm tall and the single light source was positioned about 50 
cm away from the objects. The light source was positioned 
roughly above the XCDSX900 Sony camera. We used cross-
polarization to eliminate specularities. We performed 
experiments on a white torus (fig. 16) and a billiard cue ball 
(fig. 17).  
 
Shape Average error before 

interpolation 
Average error after 
interpolation 

Billiard ball 3.813% (6.864º) 3.724% (6.704º) 
 
 
Figures 16 and 17 show the images of the objects on the left and 
the recovered normals on the right. Since the billiard cue ball 
has known dimensions we performed error analysis on that 
object. As expected, the error is bigger than in the synthetic 
images, but an average error of less than 7º is a strong 
performance. The bigger error of the billiard ball sample is due 
to image noise, reflections, non-uniformity of the illuminant 
and inaccuracies in the position of the light source. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. LIMITATIONS 

Our method has its limitations. Its accuracy depends on how 
accurately we can recover the surface normals at occluding 
contours. We tested the sensitivity of Shape From Isophotes to 
the accuracy of the estimates at the occluding contours for the 
hyperboloid synthetic image. Each normal at the occluding 
contour was perturbed by at most 1º, 2º, 3º, 4º and 5º 
accordingly. As expected the accuracy of the recovered normals 
was affected proportionally (see table 3), but the error in the 
recovered map was still below 18º. Furthermore, when the 
normals at occluding contours are error prone, the propagation 
paths are short and erratic (Figure 18a). Thus, one can detect 
that feature and associate a reliability measurement to each 
recovered normal.  
 

 
a 

 
b 

Figure 18. Propagation curves for a) erroneous starting 
surface normals at the occluding contours and b) accurate 

starting surface normals at the occluding contours 
 

Initial normals errors Average Recovered 
normals error 

0 1.465% (2.638º) 
Between -1º and 1º 1.911% (3.441º) 
Between -2º and 2º 3.460% (6.228º) 
Between -3º and 3º 5.382% (9.687º) 
Between -4º and 4º 7.921% (14.259º) 
Between -5º and 5º 9.664% (17.396º) 

 
 
 
Lastly, like other SFS methods, our technique, as is, is currently 
applicable to diffuse surfaces only. The surface generated by 
propagating from the starting curve might not cover the whole 
visible surface, so additional curves or some interpolation might 
be needed. 
 
 

Figure 12. . Hyperboloid, Lambertian surface, light 
perpendicular to the image 

Figure 13. Cone, Lambertian surface, light perpendicular to 
the image 

Figure 15. Cone, Lambertian surface, light perpendicular to 
the image. 

Figure 14. Hyperboloid, Lambertian surface, light 
perpendicular to the image 

Figure 16. Torus 

Figure 17. Billiard ball 

Table 2. Average error for the Billiard ball image 

Table 3. Average recovered normals error for an hyperboloid 
image when there are starting normals errors 
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5. UNKNOWN LIGHT SOURCES 

The light source does not need to be parallel to the viewer 
direction. Figure 19 shows normals recovered when the light is 
not parallel to the viewer direction, but is known. More 
specifically, in each of the synthetic images shown in figure 19 
(from left to right) we moved the light source along the X-axis 
so that it would form a 5.7º, 11.3º and 16.7º angle with the optic 
axis accordingly. The error in the recovered map is 1.616% 
(2.908º), 1.452% (2.613º) and 1.621% (2.918º) accordingly. 
After interpolation the error becomes 1.747% (3.144º), 2.172% 
(3.910º) and 2.447% (4.404º). 
 
If our estimate of the light source position is erroneous, the 
normal map can still be recovered, but the larger our error in the 
light source position, the bigger our error in the recovered 
normal map. More specifically, for light source direction error 
of 5.7º the normal map error is 2.389% (4.301º), for 11.3 º it is 
4.407% (7.933º) after the initial light source direction error was 
again subtracted from the obtained normals. In this latter case 
the coverage was reduced to one side of the object and the strips 
were looking chaotic (figure 18a). 
 

  
 

   
Figure 19. Hyperboloid, the source light comes from the 

right 5.7º, 11.3º and 16.7º 
 
One can take advantage of the localized irregularities in the 
propagation direction and use them for iteratively improving the 
light source estimate. For example, the following algorithm 
could be used for detecting the light source direction, starting 
from an initial light source estimate: 
1. Calculate starting normals using the light source direction 
2. Calculate the normal map 
3. Check strip coverage. 
4. If the strip coverage contains erratic strips, move the light 
source toward the opposite direction of the object region which 
contains those strips and go to 1. Otherwise end the algorithm 
and keep the recovered light direction. 
 
 

6. CONCLUSIONS 

We developed a new Shape from Shading method that uses the 
image isophotes in recovering surface normals. Unlike 
minimization methods it does not suffer from numerical 
instabilities and because the propagation direction is decoupled 
from the gradient direction it is less error prone than 
characteristic strip methods in areas where the gradient is zero. 
Our quantitative error analysis showed an improved 
performance with average error of less than 7º. The errors are 
attributed to noise and to the fact that real images do not fully 
satisfy the simplifying assumptions of our theory (i.e. inter-

reflections, not truly distant light sources, etc.). Future work 
includes experiments using complex surfaces and relaxing more 
initial conditions. We are currently investigating isophote based 
techniques for iteratively estimating the light source direction 
and the normal map. We also want to expand our method to 
work with more complex reflectance maps, i.e textured surfaces 
and surfaces with specularities and shadows. 
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ABSTRACT

A framework for the comparison of photoconsistency measures used in voxel coloring algorithm is described. With this framework,
the results obtained in generalized voxel coloring algorithm using certain photoconsistency measures are discussed qualitatively and
quantitatively. The photoconsistency measures are based on standard deviation, Minkowsky distance, adaptive threshold, histogram,
and color caching. Quantitative measurement is performed with root-mean-square-error and normalized-cross-correlation-ratio. The
results show that, the photoconsistency measures which require threshold(s) may produce better/worse results depending on the selected
threshold(s). Also, modeling textured objects always produce better reconstruction results.

1 INTRODUCTION

The main goal of volumetric scene modeling approaches is to find
out, whether a given point is on an object’s surface in the scene
or not. According to the information being used in reconstruc-
tion, these approaches are classified into two groups: shape-from-
silhouette and shape-from-photoconsistency. In shape-from-silhou-
ette approaches, the model is extracted using back projections of
the silhouettes onto the images: Each back projected silhouette
corresponds to a volume in the space; intersection of these vol-
umes gives the model (Mülayim et al., 2003). In shape-from-
photoconsistency approaches, on the other hand, the photocon-
sistency of light coming from a point in the scene is taken into
account: If the light coming from a point in the scene is not pho-
toconsistent, then this point cannot be on a surface in the scene.
In both approaches, the space is modeled using volume elements,
voxels. Voxel coloring and its variations (space carving (Broad-
hurst and Cipolla, 2000, Kutulakos and Seitz, 2000), generalized
voxel coloring (Culbertson et al., 1999), multihypothesis voxel
coloring (Steinbach et al., 2000), etc.) are in shape-from-photocon-
sistency group. These variations differ in the way they determine
the visibility of a given voxel. When the same photoconsistency
measure is used, a significant difference in the output is not ob-
served. So to say, in voxel coloring algorithm and in its varia-
tions, the reconstructed model highly depends on the used pho-
toconsistency measure. In this study, generalized voxel coloring
algorithm is used to compare the effect of different photocon-
sistency measures. The experiments are performed on 3 image
sequences. Results obtained through different photoconsistency
measures are then compared using image comparison techniques,
root-mean-square-error and normalized-cross-correlation-ratio.

The organization of the paper is as follows: In the following sec-
tion, voxel coloring algorithm used in this study is explained in
detail. This section is followed by Section 3 in which photocon-
sistency measures used in voxel coloring are presented. Quali-
tative comparison of photoconsistency measures is described in
Section 4. Results obtained in the framework of this study are
given in Section 5. The paper concludes with Section 6, in which
the results are discussed and comments about the presented pho-
toconsistency measures are made.

∗Corresponding author.

2 SHAPE-FROM-PHOTOCONSISTENCY

Depending on surface properties, lighting conditions and viewing
direction, color of light coming from a point in the scene varies.
Nevertheless, different observations should be coherent. In other
words, a point on a surface should be seen with similar colors
when it is not occluded. This phenomenon is called photoconsis-
tency. Shape-from-photoconsistency approaches of volumetric
scene reconstruction are based on this property of surfaces. If the
light coming from an unconcluded portion of the scene is pho-
toconsistent, then this point should be on a surface in the scene.
Otherwise, it should be empty. This claim is based on a couple
of assumptions: Objects in the scene have Lambertian surfaces,
and projection of any point in the scene on the images can be
computed (Kutulakos and Seitz, 2000).

In this study, due to its easiness in implementation, generalized
voxel coloring algorithm is used. In order to improve computa-
tional cost, convex hull of the object is computed, and it is used
as the input of voxel coloring algorithm. For each view, voxel
space is divided into layers according to the distance to the view
point. From nearest to furthest, layers are traversed, and the vox-
els are checked for visibility. Initially, all pixels in all images are
unmarked. At each level, visible pixels are marked, so that the
visibility of voxels at the following layers can be decided. As-
sume that a voxel v at some further layer is visited. Compared
to the other voxels which are at nearer layers, it should have less
number of visible pixels in each image. Having extracted visible
pixels from all images, a set of colors is obtained. If this set is
photoconsistent, then the voxel is on the surface. The pixels are
marked and next voxel is processed. If the set is not photoconsis-
tent, then the voxel is removed from the model. The ordinal vis-
ibility constraint and traversal of voxels based on layers makes it
possible to use pixel marking as an efficient tool to handle occlu-
sions: Single sweep through the voxel space is enough to reduce
the voxel set to a more photoconsistent state. This procedure is
iterated until all voxels are photoconsistent.

3 PHOTOCONSISTENCY MEASURES

As it is mentioned in the previous section, removal or coloring
decision of a voxel depends on the set of colors, which is ob-
tained by projecting the voxel onto the images. Given n images,
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assume that I0, I1, ..., Ip−1 are the images in which voxel v is
not occluded. Then, for v, a nonempty set of colors, π, is ex-
tracted from the images as shown in Equation 1 where πj is the
set of colors extracted for v from image j, and c0, c1, ..., cm are
the extracted color values.

π =

p−1⋃
j=0

πj = {c0, c1, ..., cm} (1)

Once this set is extracted, its photoconsistency can be defined in
various ways. Some criteria used in the literature are as follows:

1. Standard deviation (Seitz and Dyer, 1999, Kutulakos and
Seitz, 2000, Culbertson et al., 1999, Broadhurst and Cipolla,
2000),

2. adaptive threshold (Slabaugh et al., 2004),

3. Minkowsky distance (Slabaugh et al., 2001),

4. histogram (Slabaugh et al., 2004),

5. color caching (Chhabra, 2001).

3.1 Standard Deviation

Using standard deviation σ as a photoconsistency measure is pro-
posed by Seitz and Dyer (Seitz and Dyer, 1999). If the standard
deviation σ of π is less than a threshold τ , π is photoconsistent,
which means the v is on the surface.

consistent(v) =

{
true, σ < τ
false, otherwise

}
(2)

3.2 Adaptive Threshold

The consistency measure based on standard deviation works well
when the object’s surface color is homogeneous. Otherwise, it
easily diverges. In order to handle this problem, Slabaugh et
al. (Slabaugh et al., 2004) proposed a new photoconsistency mea-
sure called adaptive threshold: If a voxel is on an edge or on a
textured surface, then the variation of the extracted color values
is higher. Larger thresholds should be used so that the photo-
consistency measure converges. Assume that a voxel v, which
is on an edge or on a textured surface, is visible from p views,
I0, I1, ..., Ip−1. Then, the color sets extracted from these images
for v are π0, π1, ..., πp−1, and the standard deviations of these
sets are σ0, σ1, ..., σp−1, respectively. These standard deviations
should be high, since v is on an edge or on a textured surface.
The average of these standard deviations, which is given in Equa-
tion 3, should also be high. By using this observation, authors
define a new photoconsistency measure called adaptive threshold
as given in Equation 4.

σ =
1

p− 1

p−1∑
j=0

σj (3)

consistent(v) =

{
true, σ < τ1 + στ2

false, otherwise

}
(4)

This measure brings an important advantage over the measure
based on standard deviation: The value of threshold is variable
according to the place of the voxel. If the voxel is on the edge
or textured surface, this situation can be detected with high stan-
dard deviation in each image, and a greater threshold can be used.
Adaptive threshold measure is actually superset of the measure
based on standard deviation. The need for 2 thresholds is its main
disadvantage.

3.3 Minkowsky Distance

Photoconsistency of a set can also be defined using Minkowsky
distances, L1, L2 and L∞. Minkowsky distance between two
points x and y in <k is given in Equation 5.

Lp(x, y) =

(
k∑

i=0

|xi − yi|
) 1

p

(5)

Assume that a voxel v is visible from p views, I0, I1, ..., Ip−1,
and the color sets extracted from these images are π0, π1, ..., πp−1.
Every color entity in each of these color sets should be in a certain
distance to the color entities of the other sets. Through this idea,
photoconsistency of v is defined as in Equation 6. The distance
between two color sets is given in Equation 7.

consistent(v) =

{
true, ∀i,j , consistenti,j(v)
false, otherwise

}
(6)

consistenti,j(v) =

{
true, ∀cl∈πi,cm∈πj , Lp(cl, cm) < τ
false, otherwise

}

(7)

The most important benefit of using Minkowsky distance as a
photoconsistency measure is the following. During the photocon-
sistency check, if the voxel is found to be inconsistent, there is no
need to continue to check photoconsistency of that voxel. That
means, having found a pair of colors whose difference is greater
or equal to the threshold, voxel cannot be photoconsistent.

3.4 Histogram

In order to get rid of thresholds, Slabaugh et al (Slabaugh et al.,
2004) proposed a new photoconsistency measure based on color
histogram. Photoconsistency check is performed in two steps:
histogram construction and histogram intersection. In the first
step, visible pixels of the voxel v are extracted and a color a his-
togram is constructed for each image. Next step is photoconsis-
tency check. To check whether v is photoconsistent or not, all
pairs of histograms of v have to be compared: Two views i and j
of v are photoconsistent with each other, if their histograms Hvi

and Hvj match. A matching function, match(Hvi , Hvj ), which
compares two histograms, and returns a similarity value should
be defined. Then the decision about the photoconsistency v is
made according to the measure given in Equation 8.

consistent(v) =

{
true, ∀i,j , match(Hvi , Hvj ) 6= 0
false, otherwise

}

(8)

The advantage of histogram based photoconsistency measure is
that there is no need for a preset threshold. Furthermore, paired
tests can be very efficient in some circumstances. For instance, if
the voxel is found to be inconsistent for a pair, there is no need to
test other pairs of views for photoconsistency.
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3.5 Color Caching

Color caching is a photoconsistency measure proposed by Chhabra
et al. (Chhabra, 2001). It brings a solution to the limitations
caused by Lambertian assumption. Photoconsistency of a voxel
is checked twice before it is removed: If a voxel is found in-
consistent in the first step, it is passed to the second step for an-
other check. At the first step, surface parts which show Lamber-
tian reflectance properties are tested. Those surface parts which
fail Lambertian assumptions for some reason (material proper-
ties, viewing orientation, position of the light sources, etc.) are
tested at the second step. The irradiance from these parts can
be inconsistent. In order to prevent carving of these parts, before
carving a voxel, it should be checked with another measure which
takes care of viewing orientation. Given an image, for each voxel
v, a cache is constructed. Each cache holds the visible colors of
v from the relevant image. Having constructed color caches for
each image, these caches are checked to find out, if there is a sim-
ilar or a common color in all pairs of caches. If there is a match
between all pairs of caches, v is labeled as consistent. If there is
any pair of views whose caches do not contain a similar or a com-
mon color, v is labeled as inconsistent. Chhabra (Chhabra, 2001)
defines similarity measure between two colors ci = (Ri, Gi, Bi)
and cj = (Rj , Gj , Bj) as in Equation 9, and similarity of two
images Ii and Ij as in Equation 10.

similarity(ci, cj) =

{
true, ∆i,j ≤ τ1

false, otherwise

}

∆i,j =
√

(Ri −Rj)2 + (Bi −Bj)2 + (Bi −Bj)2

(9)

similarity(Ii, Ij) ={
true, ∃cl∈cachei∃cm∈cachej similarity(cl, cm)
false, otherwise

}

(10)

So, the photoconsistency of voxel v is defined as in Equation 11.

consistent(v) =

{
true, ∀i,jconsistent(Ii, Ij)
false, otherwise

}

(11)

4 COMPARISON

In order to compare photoconsistency measures, one should be
able to measure quantitatively the quality of the reconstructed
models. In this study, similarity between captured and rendered
images of model is used to obtain a quantitative quality measure.
The images are compared using root-mean-square-error (RMSE)
and normalized cross-correlation-ratio (NCCR). Definitions of
these measures are given in Equations 12 and 13, where M and N
are the image dimensions, and G is the maximum intensity value.

RMSE(A, B) =
1

G
√

MN

√√√√
M,N∑
i,j

(Aij −Bij)2 (12)

NCCR(A, B) = 1−
∑M,N

i,j
AijBij√

(
∑M,N

i,j
A2

ij)(
∑M,N

i,j
B2

ij)
(13)

5 EXPERIMENTAL RESULTS

Photoconsistency measures are tested using 3 objects: “cup”,
“star”, and “box”. Voxel space resolution is set to 450×450×450
for all objects. Its handle makes the “cup” object hard to model.
Furthermore, the available texture information is not adequate to
obtain good results. The image sequence consists of 18 images,
16 of which are used for reconstruction and 2 for testing. Recon-
structed models are shown in Figure 1 and measured quality of
the reconstruction is tabulated in Table 1 and Table 2. There is
no significant difference between the reconstructed models quan-
titatively. Qualitative results support this result. Histogram based
photoconsistency measure would be the best choice for this im-
age sequence, since there is no need for threshold tuning in this
approach.

(a) (b)

(c) (d)

(e) (f)

Figure 1: (a) Original image, and artificially rendered images of
“cup” object obtained using (b) standard deviation, (c) histogram,
(d) adaptive threshold, (e) L1 norm, and (f) color caching.

Image No Measure NCCR (%) RMSE (%)
standard deviation 2.96 10.24

histogram 2.95 10.22
08 adaptive threshold 2.95 10.22

L1 norm 3.00 10.31
color caching 2.95 10.21

standard deviation 1.68 7.99
histogram 1.69 8.04

17 adaptive threshold 1.68 8.00
L1 norm 1.86 8.43

color caching 1.67 7.97

Table 1: Error analysis using test images for “cup” object.
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Measure NCCR (%) RMSE (%)
standard deviation 1.55 7.37

histogram 1.58 7.45
adaptive threshold 1.55 7.37

L1 norm 1.63 7.56
color caching 1.56 7.38

Table 2: Average error for “cup” object.

In order to test the photoconsistency measures on an object with
a simple geometry, “box” object is used. 12 images are taken
around the object and all of them are used during the reconstruc-
tion. In Figure 2 the result obtained using L1 norm as photocon-
sistency measure is illustrated. Measured quality of the recon-
struction is tabulated in Table 3. Rather than its quantitative re-
sults, the visual quality of the reconstructed model gives a clue. It
is about the success of shape-from-photoconsistency approaches
in general: The finer the voxel space, the better is the reconstruc-
tion and the more is the computational complexity.

(a) (b)

Figure 2: (a) Original image, and (b) artificially rendered image
of “box” object obtained using L1 norm.

Measure NCCR (%) RMSE (%)
standard deviation 2.15 10.73

histogram 2.17 10.85
adaptive threshold 2.09 10.57

L1 norm 2.15 10.70
color caching 2.09 10.61

Table 3: Average error for “box” object.

“star” object is a good example of objects that has not texture
information but a complex geometry. The image sequence for
this object consists of 18 images, 9 of which are used for recon-
struction and 9 for testing. Reconstructed models are shown in
Figure 3 and measured quality of the reconstruction is tabulated
in Table 4. Adaptive threshold seem to produce a better result
than the others. Selecting low values for the thresholds causes
overcarving. On the other hand, the higher is the threshold, the
coarser is the reconstructed model. There is a high dependency
on selecting proper thresholds for poor-textured objects. There is
no need for a threshold in histogram-based method. However, in
this case, lack of texture information causes some voxels not to
be carved. Uncarved voxels have the color blue, i. e. the back-
ground color. Similar effect is also observed when color caching
is used as photoconsistency measure.

6 CONCLUSIONS

A framework for the comparison of photoconsistency measures
used in voxel coloring algorithm is described. Reconstruction
results of 3 objects, which are obtained using generalized voxel

(a) (b)

(c) (d)

(e) (f)

Figure 3: (a) Original image, and artificially rendered images of
“star” object obtained using (b) standard deviation, (c) histogram,
(d) adaptive threshold, (e) L1 norm, and (f) color caching.

Measure NCCR (%) RMSE (%)
standard deviation 0.85 6.39

histogram 0.91 6.54
adaptive threshold 0.74 5.89

L1 norm 0.85 6.35
color caching 0.86 6.40

Table 4: Average error for “star” object.

coloring algorithm are discussed. The methods, in which thresh-
olds are used, generally give the best results, if suitable thresholds
are set. Better thresholds can be found empirically. Standard de-
viation gives appropriate results for the voxels, which are at the
edges on the images or which are projected onto highly-textured
regions of the images. Using adaptive thresholds, the threshold is
changed according to the position of the voxel. But this change
is controlled by another threshold, which is actually the bottle-
neck of the approach. The second threshold prevents carving
voxels which are at the edge or highly-textured. When the sec-
ond threshold is not a suitable value, it might generate cusps in
the final model. When objects to be modeled are highly-textured,
it is better to use histogram-based photoconsistency measure. In
this approach, there is no need for a threshold. Minkowsky dis-
tance does not have a specific benefit as a photoconsistency mea-
sure. However, Minkowsky distance is a monotonically increas-
ing function. So, if the color set is found to be inconsistent from
some views, then there is no need to check the visible pixels from
other views. This speeds the computation up. Color caching is
an appropriate photoconsistency measures to eliminate the high-
lights. However, it is also possible to eliminate the specularities
using background surface and selected lighting.
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ABSTRACT

An image-based 3D surface reconstruction technique based on simultaneous evaluation of reflectance and polarisation features is
introduced in this paper. The proposed technique is suitable for single and multi-image (photopolarimetric stereo) analysis. It is
especially suited for the difficult task of 3D reconstruction of rough metallic surfaces with non-Lambertian reflectance. The reflectance
and polarisation properties are used to determine the surface gradients individually for each image pixel. The presented multi-image
technique is invariant to variations of the surface albedo. We evaluate our algorithm based on synthetic ground truth data as well as on
a raw forged iron surface. The results we obtain for the real world example demonstrate the applicability of our method in the domain
of industrial quality inspection.

1 INTRODUCTION

Three-dimensional reconstruction of surfaces has become an im-
portant technique in the context of industrial quality inspection.
In the field of optical metrology, the currently most widely used
active approaches are primarily based onprojection of structured
light (Batlle et al., 1998). While such methods are accurate,
they require a highly precise mutual calibration of cameras and
structured light sources. Multiple structured light sources may be
needed for 3D reconstruction of non-convex surfaces. Hence, for
inline quality inspection of industrial part surfaces, less intricate
passive image-based techniques are desirable.

A well-known passive image-based surface reconstruction
method isshape from shading. This approach aims at deriving
the orientation of the surface at each pixel by using a model of
the reflectance properties of the surface and knowledge about the
illumination conditions (Horn and Brooks, 1989). The integra-
tion of shadow information into the shape from shading formal-
ism and applications of such methods in the context of fast inline
quality inspection have been demonstrated (Wöhler and Hafezi,
2005).

A further approach to reveal the 3D shape of a surface is to utilise
polarisation data. Most current literature concentrates on dielec-
tric surfaces, as for smooth dielectric surfaces, the direction and
degree of polarisation as a function of surface orientation are gov-
erned by elementary physical laws (Miyazaki et al., 2004). For
smooth dielectric surfaces a 3D surface reconstruction framework
is proposed relying on the analysis of the polarisation state of re-
flected light, the surface texture, and the locations of specular re-
flections (Miyazaki et al., 2003). In previous work, reflectance
and polarisation properties of metallic surfaces are examined,
but no physically motivated polarisation model is derived (Wolff,
1991). Furthermore, it has been demonstrated that polarisation
information can be used to determine surface orientation (Rah-
mann and Canterakis, 2001). Applications of suchshape from po-
larisationapproaches to real-world scenarios, however, are rarely
described in the literature. A variational combined shape from
shading and polarisation algorithm relying on the minimisation
of a global error function is introduced in (d’Angelo and Wöhler,
2005) and applied to 3D reconstruction of metallic surfaces.

In this paper we present an image-based method for 3D surface
reconstruction by simultaneous evaluation of information about
reflectance and polarisation. This method will be applied relying
on a pair of polarisation images of the surface (photopolarimetric
stereo). It is assumed that the scene is illuminated by unpolarised
point light sources situated at known locations. The reflectance
and polarisation properties of the surface material are measured
over a wide range of surface orientations by evaluating a series of
images acquired through a linear polarisation filter under differ-
ent rotation angles, respectively. Parameterised phenomenologi-
cal models will then be fitted to the obtained measurements. Both
reflectance and polarisation features are used to determine the
surface gradient individually for each image pixel, without intro-
ducing global constraints like smoothness (d’Angelo and Wöhler,
2005).

We systematically evaluate our method on a synthetically gen-
erated surface in order to examine its accuracy, convergence be-
haviour, and noise-robustness. We furthermore investigate the
accuracy of our 3D reconstruction technique for the real-world
example of a raw forged iron surface.

2 REFLECTANCE AND POLARISATION MODELS

2.1 Measurement of reflectance properties

The pixel intensityI(u, v) observed by a camera is governed by
thereflectance functionof the surface material,

I(u, v) = R (~n(u, v), ~s, ~v) , (1)

which depends on the surface normal~n, the illumination direction
~s, and the direction~v to the camera. We assume that both light
source and camera are situated at infinite distance from the object,
such that~s and~v are assumed to be constant. In the following,
the surface normal~n will be represented ingradient spaceby
the directional derivativesp = zx and q = zy of the surface
functionz(x, y) with ~n = (−p,−q, 1)T . We define accordingly
~s = (−ps,−qs, 1)T and~v = (−pv,−qv, 1)T in gradient space.

A well-known special case is the Lambertian reflectance func-
tion R (~n,~s) = ρ(u, v) cos θi with cos θi = ~n · ~s/ (|~n||~s|) and
ρ(u, v) as thesurface albedo. In this paper, however, we regard
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Figure 2: Left: Measured reflectance of a raw forged iron sur-
face forα = 75◦. The parameters of the reflectance function
(cf. Eq. 2) amount toσ1 = 3.85, m1 = 2.61, σ2 = 9.61, and
m2 = 15.8, where the specular lobe is described byσ1 andm1

and the specular spike byσ2 andm2.

metallic surfaces with a strongly non-Lambertian reflectance be-
haviour. We will assume that the reflectance of a typical rough
metallic surface consists of three components: a diffuse (Lam-
bertian) component, thespecular lobe, and thespecular spike
(Nayar et al., 1991). The diffuse component is generated by in-
ternal multiple scattering processes. The specular lobe, which is
caused by single reflection at the surface, is distributed around the
specular direction and may be rather broad. The specular spike is
concentrated in a small region around the specular direction and
represents mirror-like reflection, which is dominant in the case
of smooth surfaces. Fig. 1a illustrates the three components of
the reflectance function. We define an analytical form for the re-
flectance for which we perform a least-mean-squares fit to the
measured reflectance values, depending on the incidence angle
θi, the angleθr between the specular direction~r and the view-
ing direction~v (cf. Fig. 1a), and the phase angleα between the
vectors~s and~v:

R(θi, θr, α) = ρ

[
cos θi +

N∑
n=1

σn · (cos θr)
mn

]
. (2)

The angleθr can be expressed in terms of incidence angle, emis-
sion angle, and phase angle according to

cos θr = 2 cos θi cos θe − cosα, (3)

such that our phenomenological reflectance model only depends
on the incidence angleθi, the emission angleθe, and the phase
angleα. Note thatα ≤ θi + θe in the general three-dimensional
case. Forθr > 90◦ only the diffuse component is considered.
The albedoρ is assumed to be constant over the surface. The
shapes of the specular components of the reflectance function are
approximated byN = 2 terms proportional to powers ofcos θr.
The coefficients{σn} denote the strength of the specular com-
ponents relative to the diffuse component, while the parameters
{mn} denote their widths. All introduced phenomenological pa-
rameters generally depend on the phase angleα. For our mea-
surements we use a goniometer to adjust the anglesθi andθe.
The phase angleα between the vectors~s and~v is assumed to be
constant over the image.

For each configuration ofθi, θe, andα, we acquire a high dy-
namic range image by combining several images taken with dif-
ferent shutter times. The reflectance of the sample surface under
the given illumination conditions is then obtained by computing
the average greyvalue over an area in the high dynamic range im-
age that contains a flat part of the sample surface. A reflectance
measurement typical for raw forged or cast iron surfaces is shown
in Fig. 2 forα = 75◦.

2.2 Measurement of polarisation properties

In our scenario, the incident light is unpolarised. For smooth
metallic surfaces the light remains unpolarised after reflection at
the surface. Rough metallic surfaces, however, partially polarise
the reflected light (Wolff, 1991). The measurement of the polari-
sation properties of the surface is similar to the reflectance mea-
surement. For each configuration of goniometer angles, five high
dynamic range images are acquired through a linear polarisation
filter at multiple orientation anglesω between0◦ and180◦. For
each filter orientationω, an average pixel intensity over an image
area containing a flat part of the sample surface is computed as
described in Section 2.1. To the measured pixel intensities we fit
a sinusoidal function (Wolff, 1991) of the form

I(ω) = Ic + Iv cos(ω − Φ). (4)

The filter orientationΦ for which maximum intensityIc + Iv is
observed corresponds to thepolarisation angle(ω = Φ). The
polarisation degreeamounts toD = Iv/Ic. In principle, three
measurements would be sufficient to determine the three parame-
tersIc, Iv, andΦ, but the fit becomes less noise-sensitive and thus
more accurate when more measurements are used. The parameter
Ic represents the reflectance of the surface.
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Figure 3: Measured and modelled polarisation properties of a raw forged iron surface. Left: polarisation angle. Right: polarisation
degree.

According to Fig. 1b, the rotation angles of the goniometer define
the surface normal̃~n = (−p̃,−q̃, 1) of the sample surface in a
coordinate system with positivex and zeroy component of the
illumination vector~s, corresponding tops < 0 andqs = 0. With-
out loss of generality we will in the following assume a viewing
direction~v = (0, 0, 1)T . The surface normal~n in the world co-
ordinate system, in which the azimuth angle of the light source
is denoted by the angleψ, is related to~̃n by a rotationRz(ψ)
around thez axis, leading to

p̃ = p cosψ + q sinψ

q̃ = −p sinψ + q cosψ. (5)

Due to the lack of an accurate physically motivated model for the
polarisation properties of rough metallic surfaces, we perform a
polynomial fit in terms of the surface gradientsp̃ and q̃ to the
measured values of the polarisation angleΦ and degreeD. In this
framework, the modelled polarisation angleRΦ is represented by
an incomplete third-degree polynomial of the form

RΦ(p̃, q̃) = aΦ + bΦp̃q̃ + cΦq̃ + dΦp̃
2q̃ + eΦq̃

3. (6)

The constant offsetaΦ can be made zero by correspondingly
defining the zero position of the orientation angleω of the lin-
ear polarisation filter. Eq. (6) is antisymmetric iñq with respect
to aΦ. At the same time,RΦ(p̃, q̃) = aΦ = const for q̃ = 0,
corresponding to coplanar vectors~n, ~s, and~v. These properties
are required for geometrical symmetry reasons as long as the in-
teraction between the incident light and the surface material can
be assumed to be isotropic.

The observed polarisation degreeRD is represented in an analo-
gous manner by an incomplete second-degree polynomial of the
form

RD(p̃, q̃) = aD + bDp̃+ cDp̃
2 + dD q̃

2. (7)

In this case, symmetry iñq is imposed for geometrical reasons,
once more due to the assumed isotropy of light-surface interac-
tion. Fig. 3 illustrates the polarisation properties of a raw forged
iron surface at a phase angle ofα = 75◦ along with the polyno-
mial fits according to Eqs. (6) and (7).

3 3D SURFACE RECONSTRUCTION USING
REFLECTANCE AND POLARISATION

Well-known approaches to reflectance-based 3D surface recon-
struction areshape from shadingandphotometric stereo, the lat-
ter term referring to the evaluation of multiple images of the

surface acquired under different illumination conditions. These
methods aim at determining the surface gradient field, which is
then integrated in order to obtain the depthz(u, v). In this sec-
tion we will extend this approach by introducing polarisation in-
formation.

The reflectance function as well as polarisation angle and degree
can be expressed in terms of the surface gradientsp(u, v) and
q(u, v):

I(u, v) = R (p(u, v), q(u, v)) (8)

Φ(u, v) = RΦ (p(u, v), q(u, v)) (9)

D(u, v) = RD (p(u, v), q(u, v)) (10)

The representation ofR in Eq. (8) is calledreflectance map
(Horn and Brooks, 1989). Provided that the model parameters
of the reflectance and polarisation functionsR, RΦ, andRD are
known and measurements of intensity and polarisation proper-
ties are available for each image pixel, the surface gradientsp
andq can be obtained by solving the nonlinear system of equa-
tions (8)–(10). For this purpose we make use fo the Levenberg-
Marquardt algorithm in the overdetermined case and the Powell
dogleg method (Powell, 1970) otherwise. In the overdetermined
case, the root of Eqs. (8)-(10) is determined in the least-mean-
squares sense. The contributions from the different terms are
then weighted according to the measurement errors, respectively,
which we have determined toσI = 10−3Ispec with Ispec as the
intensity of the specular reflections,σΦ = 0.2◦ andσD = 0.01.
The surface profilez(u, v) is derived from the resulting gradi-
entsp(u, v) andq(u, v) by means of numerical integration of the
gradient field (Jiang and Bunke, 1997).

It is straightforward to extend this approach to photopolarimet-
ric stereo because each light source provides an additional set of
equations. Eq. (8) can only be solved, however, when the sur-
face albedoρ(u, v) is known for each surface point. A constant
albedo can be assumed in many applications. If this assumption
is not valid, albedo variations will affect the accuracy of surface
reconstruction.

For surfaces with unknown and non-uniform albedo it is possible
to utilise two images acquired under different illumination condi-
tions, such that Eq. (8) can be replaced by

I1
I2

=
R1 (p(u, v), q(u, v))

R2 (p(u, v), q(u, v))
(11)
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Figure 4: 3D reconstruction of a synthetically generated surface based ona photopolarimetric stereo image pair. (a) Ground truth.
(b) From the left: Reflectance, polarisation angle and degree images, without and with non-uniform albedo, without and with noise,
respectively (cf. Table 1). The second polarisation angle image and both polarisation degree images have been excluded from the
analysis (cf. Section 4.1). Reconstruction result for noisy images of a surface with uniform albedo is shown in (c) using the albedo-
dependent approach according to Eq. (8) and in (d) using the albedo-independent approach according to Eq. (11). Reconstruction
results for a surface with non-uniform albedo in the noise-free case is shown in (e) for the albedo-dependent and in (f) for the albedo-
independent approach.

In Eq. (11), the albedo cancels out. The quotient approach has
been introduced in the context of photoclinometric analysis of
planetary surfaces (McEwen, 1985) and has been integrated into
the shape from shading formalism (Wöhler and Hafezi, 2005).

An advantage of the described local approach is that the 3D re-
construction result is not affected by additional constraints such
as smoothness of the surface but directly yields the surface gradi-
ent field for each image pixel. A drawback, however, is the fact
that due to the inherent nonlinearity of the problem, existence and
uniqueness of a solution forp andq are not guaranteed for both
the albedo-dependent and the albedo-independent case. But in
the experiments presented in Section 4 we show that in practi-
cally relevant scenarios a reasonable solution for the surface gra-
dient field and the resulting depthz(u, v) is obtained even in the
presence of noise.

4 EXPERIMENTAL RESULTS

4.1 Evaluation based on synthetic ground truth data

To examine the accuracy of 3D reconstruction, we apply the al-
gorithm described in Section 3 to the synthetically generated sur-
face shown in Fig. 4a. We still assume a perpendicular view on
the surface along thez axis, corresponding to~v = (0, 0, 1)T . The
scene is illuminated byL = 2 light sources (one after the other)
under an angle of15◦ with respect to the horizontal plane at az-
imuth angles ofψ(1) = 0◦ andψ(2) = 90◦, respectively. This
setting results in identical phase anglesα(1) = α(2) = 75◦ for
the two light sources. The initial values forp(u, v) andq(u, v)
must be provided relying on a-priori knowledge about the surface
orientation. In the synthetic surface example, they are initialised
with the value−0.5. It has been demonstrated that the initial gra-
dients can be estimated using depth from defocus (d’Angelo and
Wöhler, 2005).

The synthetic reflectance and polarisation angle images shown in
Fig. 4b have been generated by means of the polynomial fits to
the measured reflectance and polarisation properties presented in
Figs. 2 and 3. We have used two synthetic surfaces for an eval-
uation of our reconstruction method, one surface with uniform
albedo and one with spatially non-uniform albedo. In our ex-
periments we have found that the behaviour of the polarisation
degree of rough metallic surfaces tends to change significantly
over the surface, due to local variations of the surface roughness
(d’Angelo and Ẅohler, 2005). In contrast, the behaviour of the
polarisation angle does not show local variations over the surface.
We thus decided not to make use of the polarisation degree in our
practical experiments (cf. Section 4.2).

According to Fig. 3, the observed polarisation angles cover only a
narrow interval. Hence, we have observed that the azimuth angle
ψ must be known at an accuracy of about0.1◦ if one desires
to use both polarisation angle images for reconstruction, while
the reflectance is less sensitive in this respect. As such accurate
knowledge ofψ is difficult to obtain for practical reasons, we
decided to use only one polarisation angle image.

The reconstruction results are shown in Fig. 4. The noise level
amounts to5 times the measurement errors given in Section 3.
The corresponding RMS deviations from the ground truth forz,
p, andq are given in Table 1. We have observed that for a signifi-
cant fraction of pixels (about25 percent) no solution of Eqs. (8)–
(9) is obtained with the applied initialisation, presumably due to a
small convergence radius. When Eq. (8) is replaced by Eq. (11),
convergence is achieved for all pixels, leading to much higher
accuracy of reconstruction. We have found experimentally that
it is possible to decrease the reconstruction error obtained from
Eq. (8) by decreasing the weight of the reflectance in the least-
mean-squares optimisation. As seen from the RMS error ofz, the
quotient-based approach according to Eq. (11) yields the same re-
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Table 1: Evaluation results on the synthetic ground truth example shown in Fig.4 using both reflectance images but only one polarisation
angle image.

Method Albedo RMS error (without noise) RMS error (with noise)
z p q z p q

I1,I2,Φ1 uniform 3.2 0.20 0.18 3.2 0.20 0.19
I1,I2,Φ1 non-uniform 4.1 0.25 0.24 4.1 0.26 0.24
I1/I2,Φ1 uniform 0.4 0.10 0.00 0.8 0.24 0.16
I1/I2,Φ1 non-uniform 0.4 0.10 0.00 0.8 0.24 0.17

Table 2: Evalutation results on synthetic ground truth data using various combinations of all available reflectance and polarisation data.

Method Albedo RMS error (without noise) RMS error (with noise)
z p q z p q

I1,Φ1 uniform 0.7 0.15 0.01 1.3 0.19 0.16
I1,Φ1 non-uniform 1.5 0.21 0.04 1.5 0.22 0.16
I1,D1 uniform 0.5 0.01 0.11 9.1 0.85 1.10
I1,D1 non-uniform 2.5 0.11 0.42 7.7 0.82 1.17
Φ1,D1 uniform 0.0 0.00 0.00 4.0 1.10 0.29
Φ1,D1 non-uniform 0.0 0.00 0.00 4.0 1.10 0.29
I1,Φ1,D1 uniform 0.5 0.13 0.01 1.4 0.22 0.16
I1,Φ1,D1 non-uniform 1.4 0.20 0.04 1.3 0.24 0.16
I1,I2 uniform 3.6 0.26 0.26 3.6 0.27 0.27
I1,I2 non-uniform 4.1 0.33 0.33 4.1 0.32 0.31
I1,I2,Φ1,Φ2 uniform 2.7 0.17 0.17 2.8 0.18 0.18
I1,I2,Φ1,Φ2 non-uniform 4.0 0.25 0.25 4.0 0.24 0.24
I1,I2,D1,D2 uniform 3.6 0.21 0.21 3.6 0.21 0.21
I1,I2,D1,D2 non-uniform 4.1 0.26 0.26 4.1 0.26 0.26
I1,I2,Φ1,Φ2,D1,D2 uniform 2.7 0.17 0.17 2.7 0.18 0.17
I1,I2,Φ1,Φ2,D1,D2 non-uniform 4.0 0.25 0.25 4.0 0.24 0.24
I1/I2,Φ1,Φ2 uniform 0.0 0.00 0.00 0.2 0.12 0.12
I1/I2,Φ1,Φ2 non-uniform 0.0 0.00 0.00 0.2 0.12 0.12
I1/I2,Φ1,Φ2,D1,D2 uniform 0.0 0.00 0.00 0.2 0.12 0.11
I1/I2,Φ1,Φ2,D1,D2 non-uniform 0.0 0.00 0.00 0.2 0.12 0.12

sultsfor the surfaces with uniform and non-uniform albedo, while
the error increases when Eq. (8), assuming a uniform albedo, is
used.

For comparison, we report in Table 2 the reconstruction accuracy
obtained using various combinations of all available reflectance
and polarisation data, including the polarisation degree. The val-
ues are computed both for a single set and for a pair of reflectance
and polarisation images, respectively. We have found that a pair
of intensity images alone is not sufficient for reasonably accu-
rate 3D surface reconstruction. With both reflectance and polar-
isation angle images, the reconstruction results become virtually
exact when Eq. (11) is used. Even with a single light source we
obtain good reconstruction results when all available reflectance
and polarisation data are used.

4.2 Application to a rough metallic surface

We will now describe the application of our photopolarimetric 3D
reconstruction method to the raw forged iron surface of an auto-
motive part. Image resolution was 0.30 mm per pixel. For each
pixel, the polarisation properties are determined as described in
Section 2. The 3D reconstruction resultz(u, v) along with the re-
flectance and polarisation images is shown in Fig. 5 for a flawless
and a deformed part, respectively. As discussed in Section 4.1,
the reconstruction is based on the quotientI1/I2 of the two re-
flectance images and one polarisation angle image. The surface
gradientsp(u, v) andq(u, v) are initialised with zero values. The
difference between the two surfaces shows that some material is
missing in the deformed part. This is due to a fault caused dur-

ing the forging process. The offset between the two surfaces at
the margin of the part amounts to2.05 ± 0.05 mm along the
surface normal, obtained by tactile measurement with a sliding
calliper at the points indicated by the arrows in Fig. 5b. The 3D
reconstruction yields a value of2.1 mm (Fig. 5c), which is in
good agreement. A cross-section of the same surface was mea-
sured with a laser focus profilometer and compared to the corre-
sponding cross-section extracted from the reconstructed 3D pro-
file (Fig. 5d). The RMS deviation amounts to 0.22 mm, corre-
sponding to about two-thirds of a pixel.

5 SUMMARY AND CONCLUSION

In this paper we have presented an image-based method for
3D surface reconstruction relying on the simultaneous evalua-
tion of reflectance and polarisation information for multiple im-
ages (photopolarimetric stereo). The reflectance and polarisation
properties of the surface material have been obtained by means
of a series of images acquired through a linear polarisation filter
under different orientations. Analytic phenomenological mod-
els have been fitted to the obtained measurements, allowing for
an integration of both reflectance and polarisation features into a
unified local (pixel-wise) optimisation framework. The presented
method has been evaluated based on a synthetically generated
surface. The dependence of the accuracy of 3D reconstruction on
the utilised reflectance and polarisation data is systematically ex-
amined. Furthermore we have applied our method to the difficult
real-world scenario of 3D reconstruction of a surface section of a
raw forged iron part. We have shown that our approach is suitable
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Figure 5: Application of the described 3D surface reconstruction method toa raw forged iron surface. (a) Reflectance and polarisation
angle images. The red boxes indicate the reconstructed area. (b) Reconstructed 3D profiles of both parts, viewed from the upper right.
(c) Difference∆z between flawless and deformed surface. (d) Comparison of the cross-section indicated by the dashed line in (a) to
ground truth.

for detecting anomalies of the surface shape, thus rendering it a
promising technique for optical quality inspection systems.
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ABSTRACT

This paper aims at evaluating multi-camera configurations as a function of the descriptive parameters of complex biological objects.
Multi-baseline Stereo has potential to handle projective distortion at large baselines. Being close to the observed object and the
orientation of object surfaces pointing toward the camera increase theprojection distortion. An example is 3D reconstruction of plants
where the leaves can be pointing steeply toward the cameras, while, sub-leaf reconstruction needs high depth resolution, because the
leaves overlap closely to each other. The paper presents a new dissimilarity measure, called Sums of Individual Sums of Squared
Differences (SISSD). It takes projection distortion and changing specular highlights into account by learning the gradual changing of
the feature window. The method was included in the comparative study that used realistic ray traced plant models, where the descriptive
parameters of the objects could be controlled. Other configurations in the experiment were the commonly used Multi-baseline Sum of
the Sums of Squared Differences (SSSD), the popular binocular graph cuts, and two trinocular correlation techniques. Comparison is
in regard to leaf type, texture and orientation, proportion of occlusion and proportion of changing highlights by computing the overall-,
occluded-, and highlighted- percentage of bad matching pixels (pbmp, pbmpocc, andpbmphigh). The results showed a complicated
relationship of trade-offs that points toward further development combining the strengths of the individual configurations.

1 INTRODUCTION

Computer vision based 3D reconstruction of close-up complex
biological structures is a difficult discipline. There are various
multi-camera configurations to choose from. It would be useful to
learn about the performance related to descriptive parameters of
the objects at hand, in order to choose the best configuration. The
Descriptive parameters of the objects aresurface shape, surface
orientation, presence of texture, proportion of changing specular
highlight and proportion of occlusion. The specular highlights
in concern are those that changes gradually from one image to
the next across the baseline. Multi-baseline Stereo has been de-
scribed and tested in literature as a method for improving the han-
dling of occlusion and ambiguity across the scan lines (Okutomi
and Kanade, 1993)(Jeon et al., 2001) by using the sum of the
energy measures across the camera array; e.g. Sum of Sums of
Squared Difference (SSSD). Attempts have also been made at
dealing with specular highlights by actively detecting specular
highlights within the algorithm (Li et al., 2002) and treating them
as occlusions. However, the problems related to nearby objects
are overlooked as the algorithms assume that the area looks the
same in all cameras. This paper presents an alternative measure
that utilizes the fact that a multi baseline array consists of subsets
of smaller baselines. A large baseline improves depth resolution
but it also makes the correspondence more difficult (Okutomi and
Kanade, 1993). Three factors increase this effect: Being close to
the observed object, window correlation size, and orientation of
object surfaces.

Precision agriculture is a field with rising interest in 3D computer
vision, which is becoming tangible as new high dynamic range
cameras and precalibrated multi-view cameras are being devel-
oped. These cameras satisfy the epipolar geometry constraints
and the intrinsic- and extrinsic calibration can be skipped. Close-
up 3D reconstruction of plants is an excellent example where the

leaves can be pointing steeply toward the cameras and it needs
high depth resolution because the leaves overlap closely to each
other. Excellent depth maps has potential to aid the segmenta-
tion of individual leaves (Lee et al., 1996), if the disparity maps
have trustworthy discontinuity edges. This is useful in preci-
sion agriculture for segmenting individual leaves for autonomous
weed identification, fruit picking, branch thinning, and for find-
ing sampling points on specific locations of a plant (Christensen
and Jørgensen, 2003, )(Nielsen et al., 2004). The image acquisi-
tion is expected to be done from a moving platform in an outdoor
environment, so reconstruction must be done from a single time
slice.

In general terms plants belong to the class of objects that are:
semitransparent, biological, non-rigid structures. Disparities are
often non-planar and can get verysteep toward the cameras. Tex-
tures are non-existent or highly detailed, and having more or less
specular highlights. Fortunately, they are segments of smooth
surfaces, but intertwining and overlapping. It is very difficult to
get dense ground truth. The Vision based depth map reconstruc-
tion is usually confined to fronto-planar depth scenes, where the
depth maps can be described as regions of near-equal disparities.
These scenes are viewed from a distance and have small finite dis-
parity spaces, where it is reasonable to manually acquire ground
truth. As an alternative, structured light can be used. It uses mul-
tiple images so that the objects must be rigid in time (Scharstein
and Szeliski, 2003).

2 METHODS AND MATERIAL

The stereo correspondence algorithms were all based on a basic
Sum of Squared Difference (SSD) dissimilarity (energy) function
(eq. 1). The presented methods assumes precalibrated images
satisfying epipolar geometry constraints, equal baseline, and zero
rotation.

63



Ei,j(x, y, d) =
∑

(u,v)∈W (x,y)

(Ii(u, v) − Ij(u + d, v))2 (1)

d is the tested disparity,W is the window around (x, y), Ii is the
ith image. The windows can be placed in various ways around
the pixel and question, but we limited this experiment to centered
windows. Adding multiple windows can improve the correspon-
dence near disparity borders (Fusiello et al., 2000), but we wanted
to keep this factor out of the experiment this time. It was shown
in another experiment that five symmetric windows were optimal,
ie. the center and the four diagonals (Nielsen et al., 2005).

In the classical multi baseline SSSD the Sum of Squared Differ-
ence between the reference camera and theith camera is com-
puted forN cameras. See equation 2.

S(x, y, d) = arg min
d

N∑

c=2

(E1,c(x, y,
d(c − 1)

N − 1
)) (2)

We see that the binocular case (N = 2) is a special case of this
equation.

2.1 Introducing SISSD

A new measure Sum of Individual Sums of Squared Differences
is defined as SISSD (see equation 3). This measure was supposed
to learn the graduate change in the feature window across the
baseline. This could be a problem with occlusions as it would
learn the feature of the occluding object, which was countered
by including the weighted dissimilarity in regard to the reference
camera. In the new measure we computed the Sum of Squared
Difference between thei − 1th and theith camera, and between
the 1st and theith camera to ensure that it does not adapt to a
completely different object.

S(x, y, d) = arg min
d

N∑

c=2

[α(Ec−1,c(x, y,
d(c − 1)

N − 1
))

+(1 − α)(E1,c(x, y,
d(c − 1)

N − 1
))] (3)

We see that SSSD is a special case of SISSD, whereα = 0.0.
Figure 1 shows an example of the case with steep object where
the projection distorts the orientation of the leaf. The top shows
parts of images of a five camera array. The middle plot the devel-
opment of the dissimilarity (energy) across increasing baseline.
It is obvious that SSSD increases exponentially, while SISSD
is even less than SSD. The bottom plot shows the dissimilarity
for the three measures across the scan line and prints the best
match for SSD, SSSD, SISSD and Ground Truth (GT). This trait
should also be an advantage in the presence of specular highlights
that travel across the baseline. An example is shown in figure 2.
Based on these preliminary results, a benchmark experiment was
performed. The goal was to validate that SISSD performed better
than SSSD on steep-leaved objects and in areas where the spec-
ular highlight state changes, and whether the reference similarity
constraint could counter the occlusion problem.

2.2 Comparative Methods

The other common multi-camera alternative to the multi baseline
camera array is called the right-angled trinocular L-setup (Mulli-
gan and Daniilidis, 2002). Two different trinocular algorithms are
used for comparison, trinocular minimum (Tm eq. 4) and trinocu-
lar sum (Ts eq. 5). In principle, they use two image pairs, where
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Figure1: The case of steep leaves where projection changes ori-
entation across the baseline. (a) five views of the location on
the steep leaf. (b) The development of the dissimilarity across
the baseline. (c) The dissimilarity/energy function across the
scan line in the image. The best match for SSD, SSSD, SISSD
(α = 1), and ground truth (GT) is given over the graph.

the second switches the disparity to the y-axis. Their baselines
are equal to the largest multi baseline (ImageN ).

Tm(x, y, d) = arg min
d

min(E1,Nx
(x, y, d), E1,Ny

(y, x, d))

(4)
Ts(x, y, d) = arg min

d
(E1,Nx

(x, y, d) + E1,Ny
(y, x, d)) (5)

In theory theTm should comparably be more robust to occlusions
by choosing the best match in a single image pair.Ts should
comparably be more certain of a match if the point is visible in
all cameras by choosing the best match where both image pairs
are good matches.

One of the best 3D reconstruction algorithms available uses a
graph cut energy minimization, which yields similar results to
the slower simulated annealing. The difference is that graph cuts
preserves depth discontinuity (Kolmogorov and Zabih, 2002). It
does not rely on window sizes which tend to dilate the depth re-
gions and are sensitive to perspective distortion. The main ad-
justable parameter is the impact of the smoothness constraint,λ.
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Figure2: The case of flat leaves where the highlight changing
across the baseline. The potential weakness of SISSD is that the
dissimilarity difference between the correct match and its sur-
roundings is not very pronounced. This makes the global mini-
mum sensitive to jitter.

Since it assumes regions of equal depth, it excels at fronto-planar
scenes, but may have trouble when it comes to steep leaves on
plant structures. It was interesting to see how it performed in
this new context. We used Kolmogorov’s implementation of the
graph cut algorithm (Kolmogorov and Zabih, 2002) that is re-
ferred to askz1. This is only a binocular algorithm which used
the1st and theN th camera.λ was given a small value (half of
the automatic setting).

There are three common quality metrics root-mean-square, repro-
jection/prediction of a novel view(Szeliski and Zabih, 1999), and
percentage of bad matching pixels. The latter is chosen because
the focus is to generate correct disparity maps. Root-mean-square
error does not ensure that the structure and discontinuities are pre-
served. Reprojection error does not measure the actual disparity
error, butwhether the reprojection of one green pixel happen to
hit a matching green pixel in the novel view. However, in a scene
full of green plants that is very likely even if the disparity is very
wrong.

The estimated disparity mapsdE were compared to ground truth
(dGT ) using the Percentage of Bad Matching Pixels metrics as in

(Scharstein and Szeliski, 2002):

PBMP =
1

N

∑

(x,y)

|dE(x, y) − dGT (x, y)| > δ (6)

2.3 Experimental Setup

The experimental tests were conducted in order to learn more
about the algorithms in the complex context of close-up recon-
struction of complex structures. Hence, near-photo realistic ray
traced scenes of plants were used in order to control the scene
parameters and get valid ground truth disparity maps, occlusion
masks, and highlight masks. The scenes had natural outdoor
lighting and focal blur, which is a natural problem with plants
with steep leaves. Blur is unavoidable, because the aperture can-
not be very small and the shutter must be fast when capturing
images from a moving platform and the plants are waving in the
wind.

Two main classes of plants, long leaf (grass-like, e.g. cereal) and
broad leaf (e.g. beet and tomato) were generated. This relates
to surface shape. For each of these there were plants with steep
leaves and flat leaves, respectively. This relates tosurface orien-
tation. Steep leaves compared to flat leaves have less highlight,
more occlusion, and vice versa. A natural case with two grassy
plants with flat and steep leaves and a lot of occlusion were used,
too. Each scene was generated with textured (spotted) and no tex-
ture (glossy), both having bump maps. This relates topresence
of texture. Finally, all images very generated with and without
specularity. This served two purposes; 1. it was required to find
the highlight masks (where highlights exist in one frame and not
the other), and 2. in order to test overall performance of the algo-
rithms and the same geometrical structure with and without the
presence of highlights. There were 18 image sets in total. See
figure 3 for an example with ground truth.

Figure 3: A natural case, where two grass-like plants are close
togetherand leaves are occluded. The proportion of occluded
pixels is 5% and the proportion of changing highlights are 5%.

3 RESULTS AND DISCUSSION

The overall results are shown in table 1. It is the mean and
spread of performance over all plant types. Note that the ground
truth maps were calculated in floating points as to represent the
(scaled) inverse of the real height. The disparity maps were inte-
ger pixels. If the ground truth had been rounded, the values would
have been 10-20% lower.Multi3cam used the same cameras as
Multi5cam, but skipped camera 2 and 4.

The table shows that having those two extra cameras in between
the three cameras did improve the result by 11% in average for
all pixels, 8% for highlighted pixels, and 8% for occluded pix-
els. Meanwhile, their spread was approximately equal or slightly
narrower (for occluded pixels). The significance of 8.9% versus
8.2% is up to the application to decide. The development within
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Table 1: Comparison of Stereo setups. Mean PBMP (%) and
their standard deviations calculated from all pixels (all), pixels
with different specularity state (high), and occluded pixels (occ).

Stereo Setup All High Occ
Multi3SSSD 8.9(5.9) 22.1(14.6) 50.3(30.9)
Multi3α0.25 8.9(5.6) 20.9(13.7) 55.4(28.7)
Multi3α0.50 9.9(5.6) 20.6(12.1) 64.6(23.8)
Multi3α0.75 13.5(6.6) 23.0(12.2) 69.1(24.0)
Multi5SSSD 8.3(5.5) 20.3(13.9) 46.1(28.3)
Multi5α0.25 8.2(5.3) 19.4(13.3) 49.9(24.5)
Multi5α0.50 8.8(5.4) 19.1(12.7) 55.3(22.5)
Multi5α0.75 11.6(6.0) 21.0(12.5) 69.1(20.4)
GraphCut 14.6(8.7) 19.6(16.3) 73.9(24.3)
TrinoMin 10.2(6.5) 23.1(12.5) 30.6(22.3)
TrinoSum 9.8(6.9) 23.6(15.8) 40.3(25.0)
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Figure 4: [Left] Ground truth and [Right] Graph Cuts
Log(disparityerror) for steep spotted broad leaf without high-
lights. The banding characteristics were caused by the attempt to
impose fronto-planar regions on the steep leaves.

multi5 by increasingalpha was devastating for occluded pixels
by 50%, while overall and highlight pixels reach a local minima
betweenα = 0.25 andα = 0.5. The benefit was rather small,
though; 1% for all pixels and 5% for highlight pixels. The SISSD
measure may be a improvement when using larger window sizes,
which tend to be the case when using real images. The trinocular
measures did well and they excel at occluded pixels, especially
Tm. Graph cuts did the worst, except at correcting highlight pix-
els by smoothing those areas. Figure 4 shows why graph cuts did
not do very well. The disparity map was banded, ie. staircase
shaped, instead of smooth.

Figure 5 shows the errors from the multi-baseline reconstruction
of the same plant. The errors were more recognizable as noisy
jitter, which could be removed by an energy minimizing sloped
smooth surface technique.

Figure 6 shows the errors from trinocular results for the same
plant. The very steep leaf in the middle and the one to the right
of it are difficult for all the algorithms except trinocular minimum
(Tm). It is so steep that it is almost a self-occlusion. In the second
camera the leaf would be extended along orientation of the base-
line, thus occluding the other leaf.Tm simply reconstructed it
from the Y direction. The lesson is that it is not only the orienta-
tion toward the camera that affects the result, but if the orientation
of a leaf aligns with the baseline it can be difficult to reconstruct
it. This is especially a problem with textureless grass-like leaves
that aligns with the baseline (Nielsen et al., 2004). In compari-
son, SISSD was able to reconstruct the steep leaf nearly as good,
but the leaf to the right of it was as bad as Trinocular sum (Ts).

Figure 7 plots the all-pixel results grouped by descriptive ob-
ject parameters, i.e. leaf shape, leaf orientation (flat or steep
leaves), texture, and highlights and occlusion. Horizontal axis
is the setup: M 0.0 (SSSD), M 0.25 (SISSDα = 0.25), M 0.5, M
0.75, Binocular Graph Cut, Trinocular MinimumTm, and Trinoc-
ular sumTs. The vertical axis is the mean pbmp for window sizes
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Figure 5: [Left] Log(disparity error) Multi-baseline SSSD and
[Right] SISSDα = 0.5. These results did not have any banding,
but the difference between the SSSD and SISSD was very small.
The result would be excellent if it were combined with a slope-
and discontinuity preserving graph cut minimization.
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Figure 6: [Left] Log(disparity error) trinocular minimum (Tm)
and[Right] trinocular sum (Ts).

ranging from 4-12. The same goes for figures 8 and 9 that show
the pbmp of highlight pixels and occlusion pixels, respectively.

Figure 7 plot (a)(plants without specular highlights) clearly pins
down the sources of error for reconstruction in general. The flat-
leafed plants (since they had no specular highlights on this plot)
all score very well. The errors were large when the leaves were
steep or occluding (the model calledtwo grassy is 5% occluded
in comparison to the steep broad leaf which is only 1%).

The interesting aspect on plot (a) on figure 7 is that it was the
steep leaves that best improved slightly from SISSD, while the
flat leaves are reconstructed best through SSSD. However, taking
a look at plot (b) reveals that when there were highlight on those
flat leaves, SISSD was an improvement, too, especially for broad
leaf plants.

Note also the fact that the steep leaves were troublesome for
graph cuts on plot (a) and (c), especially the glossy steep broad
leaf, which was easier for the others compared to grassy plants.
Plot (a) to (d) shows consistently thatTs reconstructed grass-like
plants better thanTm, butTm reconstructed broad leaf plant best.
This trend is revisited in figure 8.

Figure 7 Plot (d) shows that in the more natural case, SSSD and
Ts were best, even thoughTm was best in most occluded parts
(figure 9 plot (a) and (b)). Maybe the algorithm could dynam-
ically chooseTm by detecting occlusion with left-right consis-
tency (Fusiello et al., 2000).

Figure 8 plot (a) and (b) shows the subtle strength of SISSD in
the highlighted areas. The flat glossy broad leaf was the most
difficult to reconstruct. Note that this is the plant type that was
50% highlighted, and there were no texture other than shading
and bumps to correlate. The graph cut algorithm were particularly
bad in this case, because it created non existant surfaces in over
the plant from the errors of the highlights.
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4 CONCLUSIONS

Therelationship between the performances of the algorithms and
the descriptive parameters of the plant objects were investigated.
A new multi-baseline Sum of Squared Difference based correla-
tion was defined (SISSD) in order to minimize the effect of per-
spective distortion within the windows. The results showed that
there was a relationship between the performance and the descrip-
tive parameters of the objects. However, SISSD was only a mar-
ginal improvement on images with steep leaves (slopes), but more
so in the presence of highlights. It was mainly an improvement at
the actual highlight areas, especially on shiny broad leaf plants.
On the other hand SSSD was better at matching the occluded ar-
eas. The best algorithm for occluded areas was the trinocularTm

algorithm. Binocular Graph cuts were not able to reconstruct the
slopes in steep leaves, but the smoothness optimization seemed
to smoothen over the errors from highlights, when the highlight
areas were not too large. The results showed a complicated re-
lationship of trade-offs that points toward further development
combining the strengths of the individual configurations.

4.1 Perspectives on future work

An improvement to the SISSD measure could be to haveα de-
pend on the distance from reference image. Another interesting
aspect would be to place the 5 cameras in a trinocular setup. The
five cameras would then complete two systems of three-camera
multi-baseline systems in each direction.

Furthermore, a multi-baseline or trinocular algorithm in combi-
nation with graph cuts would be interesting to pursue, and to
improve its ability to reconstruct steep slopes. There are other
works on these aspects to pay special attention to (Buehler et
al., 2002)(Lin and Tomasi, 2004). Buehler’s trinocular algorithm
does not handle the situation where occlusion only exist in one
camera pair. This was the strength of the trinocular minimum
algorithm in this paper. Lin and Tomasi’s algorithm for sloped
surfaces relies too strongly on large smooth surfaces. This may
be a problem for natural leaves that can be curled and there might
only be small segments showing of each leaf, while the surface
boundaries are only vaguely defined by intensity edges (some-
times not at all).

The final step is to create a mesh that is able to treat intertwining
and overlapping leaves as individual surfaces.
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Figure7: PBMP from all pixels results by object type and leaf
orientation. The worst case occlusion is theTwo Grassy Plants
model being 5% occluded. The worst case of highlights were the
flat grass-like and flat broad-leaf. 20% of their area suffered from
changing specular highlights.
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Figure8: PBMP from specular changing highlight pixels results
by object type and leaf orientation. SISSD (M0.25-M0.75) im-
proves performance.
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Figure 9: PBMP from occluded pixels results by object type.
Trinocular minimumTm is the best algorithm for occluded ar-
eas.
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